# Copyright (c) The HuggingFace Inc. team. All rights reserved. # Copyright (c) Shen Yan. All rights reserved. # This code is built upon Huggingface's transformers repository. from transformers import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class TCMoEConfig(PretrainedConfig): r""" Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50_304): Vocabulary size of the StableLM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`StableLMEpochModel`]. intermediate_size (`int`, *optional*, defaults to 6912): Dimension of the MLP representations. hidden_size (`int`, *optional*, defaults to 2560): Dimension of the decoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. rope_pct (`float`, *optional*, defaults to 1.0): Percentage of hidden dimensions to allocate to rotary embeddings. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). num_experts (`int`, *optional*, defaults to 8): Number of experts in the TCMoE layer. top_k (`int`, *optional*, defaults to 2): Number of top experts to use in the TCMoE layer. num_null_experts (`int`, *optional*, defaults to 2): Number of null experts in the TCMoE layer. initializer_range (`float`, *optional*, defaults to 1e-5): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. norm_eps (`float`, *optional*, defaults to 1e-8): The epsilon used by the normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings(`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings """ model_type = "tcmoe" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=50432, intermediate_size=2816, hidden_size=1024, num_hidden_layers=32, num_attention_heads=16, num_key_value_heads=2, rope_pct=1.0, rope_theta=10000.0, max_position_embeddings=2048, num_experts=8, moe_topk=2, num_null_experts=2, initializer_range=0.006, norm_eps=1e-8, use_cache=True, bos_token_id=0, eos_token_id=0, tie_word_embeddings=True, **kwargs, ): self.vocab_size = vocab_size self.intermediate_size = intermediate_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.rope_pct = rope_pct self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.num_experts = num_experts self.moe_topk = moe_topk self.num_null_experts = num_null_experts self.initializer_range = initializer_range self.norm_eps = norm_eps self.use_cache = use_cache super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )