# Copyright (c) The HuggingFace Inc. team. All rights reserved. # Copyright (c) Shen Yan. All rights reserved. # This code is built upon Huggingface's transformers repository. import math from typing import Optional, Tuple, Union from transformers import PreTrainedModel import torch import torch.nn as nn from transformers.utils import logging from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from torch.nn import CrossEntropyLoss from configuration_tcmoe import TCMoEConfig logger = logging.get_logger(__name__) # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0, ): """Make causal mask used for bi-directional self-attention.""" batch_size, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`.""" batch_size, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill( inverted_mask.to(torch.bool), torch.finfo(dtype).min ) class RotaryEmbedding(nn.Module): def __init__( self, dim: int, max_position_embeddings: int, base: int = 10_000, device: Optional[torch.device] = None, ): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(), ) def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32) # Don't do einsum, it converts fp32 to fp16 under AMP # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) def forward(self, x: torch.Tensor, seq_len: Optional[int] = None): # x: [batch_size, num_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype()) return ( self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), ) def rotate_half(x: torch.Tensor): """Rotates half the hidden dims of the input.""" x1, x2 = torch.chunk(x, 2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids): # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim] sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim] q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class Attention(nn.Module): def __init__(self, config: TCMoEConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.k_norm = RMSNorm( (self.hidden_size // self.num_heads), eps=config.norm_eps ) self._init_rope() def _init_rope(self): self.rotary_ndims = int(self.head_dim * self.config.rope_pct) self.rotary_emb = RotaryEmbedding( self.rotary_ndims, max_position_embeddings=self.config.max_position_embeddings, base=self.config.rope_theta, ) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, position_ids: torch.LongTensor, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) query_rot = query_states[..., : self.rotary_ndims] query_pass = query_states[..., self.rotary_ndims :] key_rot = key_states[..., : self.rotary_ndims] key_pass = key_states[..., self.rotary_ndims :] kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) key_states = self.k_norm(key_states) # [batch_size, num_heads, seq_len, head_dim] query_states = torch.cat((query_states, query_pass), dim=-1) key_states = torch.cat((key_states, key_pass), dim=-1) if past_key_value is not None: # Reuse k, v, self_attention key_states = torch.cat((past_key_value[0], key_states), dim=2) value_states = torch.cat((past_key_value[1], value_states), dim=2) past_key_value = (key_states, value_states) if use_cache else None # Repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # Upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) # Merge heads attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) # Final linear projection attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class MLP(nn.Module): def __init__(self, config: TCMoEConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.act_fn = nn.SiLU() def forward(self, x: torch.Tensor) -> torch.Tensor: return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) class TCMoEBlock(nn.Module): def __init__(self, config): super().__init__() self.num_experts = config.num_experts self.top_k = config.moe_topk self.num_null_experts = config.num_null_experts self.gate = nn.Linear(config.hidden_size, self.num_experts * 2 + self.num_null_experts, bias=False) self.experts = nn.ModuleList([MLP(config) for _ in range(self.num_experts)]) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: self.gate.float() batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) logits = self.gate(hidden_states.float()) # Add bias to the null experts and negative experts logits[:, self.num_experts * 2:] = logits[:, self.num_experts * 2:] - 10.0 logits[:, self.num_experts:self.num_experts * 2] = logits[:, self.num_experts:self.num_experts * 2] - 1.0 gates = torch.nn.functional.softmax(logits, dim=1) # Select Top-k experts weights, selected_experts = torch.topk(gates, k=self.top_k, dim=-1, sorted=False) # Calculate the weight sum for the activated non-null experts weights_from_non_null_experts = weights * (selected_experts < 2 * self.num_experts).float() weightsum_from_non_null_experts = weights_from_non_null_experts.sum(1, keepdim=True) # Calculate the weight sum for all null experts (since all null experts are activated) weightsum_from_null_experts = gates[:, 2 * self.num_experts:].sum(1, keepdim=True) # Normalize the weights of all activated experts weightsum = weightsum_from_non_null_experts + weightsum_from_null_experts gates = gates / weightsum weights = torch.gather(gates, 1, selected_experts) weights = weights.to(hidden_states.dtype) final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # One hot encode the selected experts to create an expert mask # this will be used to easily index which expert is going to be selected expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts * 2 + self.num_null_experts).permute(2, 1, 0) # Loop over all available experts in the model and perform the computation on each expert for expert_idx in range(self.num_experts * 2): expert_layer = self.experts[expert_idx if expert_idx < self.num_experts else expert_idx - self.num_experts] idx, top_x = torch.where(expert_mask[expert_idx]) # Index the correct hidden states and compute the expert hidden state for # the current expert. We need to make sure to multiply the output hidden # states by `routing_weights` on the corresponding tokens (top-1 and top-2) current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) if expert_idx < self.num_experts: current_hidden_states = expert_layer(current_state) * weights[top_x, idx, None] else: current_hidden_states = expert_layer(current_state) * weights[top_x, idx, None] * -1.0 current_hidden_states = expert_layer(current_state) * weights[top_x, idx, None] # However `index_add_` only support torch tensors for indexing so we'll use # the `top_x` tensor here. final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states class TCMoEDecoderLayer(nn.Module): def __init__(self, config: TCMoEConfig): super().__init__() self.self_attn = Attention(config) self.mlp = TCMoEBlock(config) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.norm_eps) def forward( self, hidden_states: Optional[torch.FloatTensor], attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class TCMoEPreTrainedModel(PreTrainedModel): """An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TCMoEConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["TCMoEDecoderLayer"] _skip_keys_device_placement = "past_key_values" def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, RMSNorm): module.weight.data.fill_(1.0) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class TCMoEModel(TCMoEPreTrainedModel): def __init__(self, config: TCMoEConfig): super().__init__(config) self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.layers = nn.ModuleList([TCMoEDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask( self, attention_mask: torch.Tensor, input_shape: torch.Size, inputs_embeds: torch.Tensor, past_key_values_length: int, ): # Create causal mask # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask( attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ).to(inputs_embeds.device) combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask return combined_attention_mask def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" ) elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError( "You have to specify either decoder_input_ids or decoder_inputs_embeds" ) seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # Embed positions if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device, ) attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # Decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = ( past_key_values[idx] if past_key_values is not None else None ) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # Add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class TCMoEForCausalLM(PreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = TCMoEModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings: nn.Module): self.lm_head = new_embeddings def get_decoder(self): return self.model def set_decoder(self, decoder): self.model = decoder def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states).float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs, ): # Trim decoder_input_ids if past is used if past_key_values and past_key_values[0] is not None: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # Create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # If `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple( past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past ), ) return reordered_past