xiaosena commited on
Commit
0a4a712
·
verified ·
1 Parent(s): 44ecfa2

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sunjisen/qwen_Weather
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/qwen1_8/Qwen-1_8B-Chat-Int4",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "c_proj",
24
+ "w2",
25
+ "w1",
26
+ "c_attn"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b6dbe1ed71e3316bda59b515b949cec18be07512c444dc7197eb362d97031e4
3
+ size 107378800
infer.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from peft import AutoPeftModelForCausalLM
2
+ from transformers import AutoTokenizer
3
+
4
+ prompt_template='''
5
+ 给定一句话:“%s”,请你按步骤要求工作。
6
+
7
+ 步骤1:识别这句话中的城市和日期共2个信息
8
+ 步骤2:根据城市和日期信息,生成JSON字符串,格式为{"city":城市,"date":日期}
9
+
10
+ 请问,这个JSON字符串是:
11
+ '''
12
+ tokenizer = AutoTokenizer.from_pretrained('/home/Qwen/output_qwen')
13
+ model = AutoPeftModelForCausalLM.from_pretrained(
14
+ '/home/Qwen/output_qwen', # path to the output directory
15
+ device_map="auto",
16
+ trust_remote_code=True
17
+ ).eval()
18
+ model.generation_config.top_p=0 # 只选择概率最高的token
19
+
20
+ Q_list=['2020年4月16号三亚下雨么?','青岛3-15号天气预报','5月6号下雪么,城市是威海','青岛2023年12月30号有雾霾么?','我打算6月1号去北京旅游,请问天气怎么样?','你们打算1月3号坐哪一趟航班去上海?','小明和小红是8月8号在上海结婚么?',
21
+ '一起去东北看冰雕么,大概是1月15号左右,我们3个人一起']
22
+ for Q in Q_list:
23
+ prompt=prompt_template%(Q,)
24
+ A,hist=model.chat(tokenizer,prompt,history=None)
25
+ print('Q:%s\nA:%s\n'%(Q,A))
inference.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from peft import AutoPeftModelForCausalLM
2
+ from transformers import AutoTokenizer
3
+
4
+ tokenizer = AutoTokenizer.from_pretrained('/home/Qwen/output_qwen')
5
+ model = AutoPeftModelForCausalLM.from_pretrained(
6
+ '/home/Qwen/output_qwen', # path to the output directory
7
+ device_map="auto",
8
+ trust_remote_code=True
9
+ ).eval()
10
+ model.generation_config.top_p=0
11
+ prompt='青岛海边钓鱼需要特别注意什么?'
12
+ resp,hist=model.chat(tokenizer,prompt,history=None)
13
+ print(resp)
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<|endoftext|>"
3
+ }
tokenization_qwen.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import Collection, Dict, List, Set, Tuple, Union
13
+
14
+ import tiktoken
15
+ from transformers import PreTrainedTokenizer, AddedToken
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
+
22
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
+ ENDOFTEXT = "<|endoftext|>"
24
+ IMSTART = "<|im_start|>"
25
+ IMEND = "<|im_end|>"
26
+ # as the default behavior is changed to allow special tokens in
27
+ # regular texts, the surface forms of special tokens need to be
28
+ # as different as possible to minimize the impact
29
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ # changed to use actual index to avoid misconfiguration with vocabulary expansion
31
+ SPECIAL_START_ID = 151643
32
+ SPECIAL_TOKENS = tuple(
33
+ enumerate(
34
+ (
35
+ (
36
+ ENDOFTEXT,
37
+ IMSTART,
38
+ IMEND,
39
+ )
40
+ + EXTRAS
41
+ ),
42
+ start=SPECIAL_START_ID,
43
+ )
44
+ )
45
+ SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
46
+
47
+
48
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
49
+ with open(tiktoken_bpe_file, "rb") as f:
50
+ contents = f.read()
51
+ return {
52
+ base64.b64decode(token): int(rank)
53
+ for token, rank in (line.split() for line in contents.splitlines() if line)
54
+ }
55
+
56
+
57
+ class QWenTokenizer(PreTrainedTokenizer):
58
+ """QWen tokenizer."""
59
+
60
+ vocab_files_names = VOCAB_FILES_NAMES
61
+
62
+ def __init__(
63
+ self,
64
+ vocab_file,
65
+ errors="replace",
66
+ extra_vocab_file=None,
67
+ **kwargs,
68
+ ):
69
+ super().__init__(**kwargs)
70
+
71
+ # how to handle errors in decoding UTF-8 byte sequences
72
+ # use ignore if you are in streaming inference
73
+ self.errors = errors
74
+
75
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
76
+ self.special_tokens = {
77
+ token: index
78
+ for index, token in SPECIAL_TOKENS
79
+ }
80
+
81
+ # try load extra vocab from file
82
+ if extra_vocab_file is not None:
83
+ used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
84
+ extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
85
+ for token, index in extra_mergeable_ranks.items():
86
+ if token in self.mergeable_ranks:
87
+ logger.info(f"extra token {token} exists, skipping")
88
+ continue
89
+ if index in used_ids:
90
+ logger.info(f'the index {index} for extra token {token} exists, skipping')
91
+ continue
92
+ self.mergeable_ranks[token] = index
93
+ # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
94
+
95
+ enc = tiktoken.Encoding(
96
+ "Qwen",
97
+ pat_str=PAT_STR,
98
+ mergeable_ranks=self.mergeable_ranks,
99
+ special_tokens=self.special_tokens,
100
+ )
101
+ assert (
102
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
103
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
104
+
105
+ self.decoder = {
106
+ v: k for k, v in self.mergeable_ranks.items()
107
+ } # type: dict[int, bytes|str]
108
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
109
+
110
+ self.tokenizer = enc # type: tiktoken.Encoding
111
+
112
+ self.eod_id = self.tokenizer.eot_token
113
+ self.im_start_id = self.special_tokens[IMSTART]
114
+ self.im_end_id = self.special_tokens[IMEND]
115
+
116
+ def __getstate__(self):
117
+ # for pickle lovers
118
+ state = self.__dict__.copy()
119
+ del state["tokenizer"]
120
+ return state
121
+
122
+ def __setstate__(self, state):
123
+ # tokenizer is not python native; don't pass it; rebuild it
124
+ self.__dict__.update(state)
125
+ enc = tiktoken.Encoding(
126
+ "Qwen",
127
+ pat_str=PAT_STR,
128
+ mergeable_ranks=self.mergeable_ranks,
129
+ special_tokens=self.special_tokens,
130
+ )
131
+ self.tokenizer = enc
132
+
133
+ def __len__(self) -> int:
134
+ return self.tokenizer.n_vocab
135
+
136
+ def get_vocab(self) -> Dict[bytes, int]:
137
+ return self.mergeable_ranks
138
+
139
+ def convert_tokens_to_ids(
140
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
141
+ ) -> List[int]:
142
+ ids = []
143
+ if isinstance(tokens, (str, bytes)):
144
+ if tokens in self.special_tokens:
145
+ return self.special_tokens[tokens]
146
+ else:
147
+ return self.mergeable_ranks.get(tokens)
148
+ for token in tokens:
149
+ if token in self.special_tokens:
150
+ ids.append(self.special_tokens[token])
151
+ else:
152
+ ids.append(self.mergeable_ranks.get(token))
153
+ return ids
154
+
155
+ def _add_tokens(
156
+ self,
157
+ new_tokens: Union[List[str], List[AddedToken]],
158
+ special_tokens: bool = False,
159
+ ) -> int:
160
+ if not special_tokens and new_tokens:
161
+ raise ValueError("Adding regular tokens is not supported")
162
+ for token in new_tokens:
163
+ surface_form = token.content if isinstance(token, AddedToken) else token
164
+ if surface_form not in SPECIAL_TOKENS_SET:
165
+ raise ValueError("Adding unknown special tokens is not supported")
166
+ return 0
167
+
168
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
169
+ """
170
+ Save only the vocabulary of the tokenizer (vocabulary).
171
+
172
+ Returns:
173
+ `Tuple(str)`: Paths to the files saved.
174
+ """
175
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
176
+ with open(file_path, "w", encoding="utf8") as w:
177
+ for k, v in self.mergeable_ranks.items():
178
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
179
+ w.write(line)
180
+ return (file_path,)
181
+
182
+ def tokenize(
183
+ self,
184
+ text: str,
185
+ allowed_special: Union[Set, str] = "all",
186
+ disallowed_special: Union[Collection, str] = (),
187
+ **kwargs,
188
+ ) -> List[Union[bytes, str]]:
189
+ """
190
+ Converts a string in a sequence of tokens.
191
+
192
+ Args:
193
+ text (`str`):
194
+ The sequence to be encoded.
195
+ allowed_special (`Literal["all"]` or `set`):
196
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
197
+ Default to "all".
198
+ disallowed_special (`Literal["all"]` or `Collection`):
199
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
200
+ Default to an empty tuple.
201
+
202
+ kwargs (additional keyword arguments, *optional*):
203
+ Will be passed to the underlying model specific encode method.
204
+
205
+ Returns:
206
+ `List[bytes|str]`: The list of tokens.
207
+ """
208
+ tokens = []
209
+ text = unicodedata.normalize("NFC", text)
210
+
211
+ # this implementation takes a detour: text -> token id -> token surface forms
212
+ for t in self.tokenizer.encode(
213
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
214
+ ):
215
+ tokens.append(self.decoder[t])
216
+ return tokens
217
+
218
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
219
+ """
220
+ Converts a sequence of tokens in a single string.
221
+ """
222
+ text = ""
223
+ temp = b""
224
+ for t in tokens:
225
+ if isinstance(t, str):
226
+ if temp:
227
+ text += temp.decode("utf-8", errors=self.errors)
228
+ temp = b""
229
+ text += t
230
+ elif isinstance(t, bytes):
231
+ temp += t
232
+ else:
233
+ raise TypeError("token should only be of type types or str")
234
+ if temp:
235
+ text += temp.decode("utf-8", errors=self.errors)
236
+ return text
237
+
238
+ @property
239
+ def vocab_size(self):
240
+ return self.tokenizer.n_vocab
241
+
242
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
243
+ """Converts an id to a token, special tokens included"""
244
+ if index in self.decoder:
245
+ return self.decoder[index]
246
+ raise ValueError("unknown ids")
247
+
248
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
249
+ """Converts a token to an id using the vocab, special tokens included"""
250
+ if token in self.special_tokens:
251
+ return self.special_tokens[token]
252
+ if token in self.mergeable_ranks:
253
+ return self.mergeable_ranks[token]
254
+ raise ValueError("unknown token")
255
+
256
+ def _tokenize(self, text: str, **kwargs):
257
+ """
258
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
259
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
260
+
261
+ Do NOT take care of added tokens.
262
+ """
263
+ raise NotImplementedError
264
+
265
+ def _decode(
266
+ self,
267
+ token_ids: Union[int, List[int]],
268
+ skip_special_tokens: bool = False,
269
+ errors: str = None,
270
+ **kwargs,
271
+ ) -> str:
272
+ if isinstance(token_ids, int):
273
+ token_ids = [token_ids]
274
+ if skip_special_tokens:
275
+ token_ids = [i for i in token_ids if i < self.eod_id]
276
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "tokenization_qwen.QWenTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": true,
10
+ "model_max_length": 512,
11
+ "pad_token": "<|endoftext|>",
12
+ "padding_side": "right",
13
+ "tokenizer_class": "QWenTokenizer"
14
+ }
trainer_state.json ADDED
@@ -0,0 +1,1890 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.96,
5
+ "eval_steps": 500,
6
+ "global_step": 310,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "learning_rate": 0.0,
14
+ "loss": 0.7372,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "learning_rate": 0.00015,
20
+ "loss": 0.8221,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.05,
25
+ "learning_rate": 0.0002377443751081734,
26
+ "loss": 0.7888,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.06,
31
+ "learning_rate": 0.0003,
32
+ "loss": 0.5,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.08,
37
+ "learning_rate": 0.0003,
38
+ "loss": 0.2017,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.1,
43
+ "learning_rate": 0.0003,
44
+ "loss": 0.0627,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.11,
49
+ "learning_rate": 0.0003,
50
+ "loss": 0.0665,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.13,
55
+ "learning_rate": 0.0003,
56
+ "loss": 0.0402,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.14,
61
+ "learning_rate": 0.0003,
62
+ "loss": 0.0236,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.16,
67
+ "learning_rate": 0.0003,
68
+ "loss": 0.0195,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.18,
73
+ "learning_rate": 0.0003,
74
+ "loss": 0.0181,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.19,
79
+ "learning_rate": 0.0003,
80
+ "loss": 0.015,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.21,
85
+ "learning_rate": 0.0003,
86
+ "loss": 0.0082,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.22,
91
+ "learning_rate": 0.0003,
92
+ "loss": 0.0096,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.24,
97
+ "learning_rate": 0.0003,
98
+ "loss": 0.004,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.26,
103
+ "learning_rate": 0.0003,
104
+ "loss": 0.0025,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.27,
109
+ "learning_rate": 0.0003,
110
+ "loss": 0.001,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.29,
115
+ "learning_rate": 0.0003,
116
+ "loss": 0.0106,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.3,
121
+ "learning_rate": 0.0003,
122
+ "loss": 0.0011,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.32,
127
+ "learning_rate": 0.0003,
128
+ "loss": 0.0022,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.34,
133
+ "learning_rate": 0.0003,
134
+ "loss": 0.0011,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.35,
139
+ "learning_rate": 0.0003,
140
+ "loss": 0.0011,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.37,
145
+ "learning_rate": 0.0003,
146
+ "loss": 0.0033,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.38,
151
+ "learning_rate": 0.0003,
152
+ "loss": 0.0016,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.4,
157
+ "learning_rate": 0.0003,
158
+ "loss": 0.0003,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.42,
163
+ "learning_rate": 0.0003,
164
+ "loss": 0.0001,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.43,
169
+ "learning_rate": 0.0003,
170
+ "loss": 0.0011,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.45,
175
+ "learning_rate": 0.0003,
176
+ "loss": 0.0013,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.46,
181
+ "learning_rate": 0.0003,
182
+ "loss": 0.0001,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.48,
187
+ "learning_rate": 0.0003,
188
+ "loss": 0.0001,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.5,
193
+ "learning_rate": 0.0003,
194
+ "loss": 0.0001,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.51,
199
+ "learning_rate": 0.0003,
200
+ "loss": 0.0227,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.53,
205
+ "learning_rate": 0.0003,
206
+ "loss": 0.0001,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.54,
211
+ "learning_rate": 0.0003,
212
+ "loss": 0.0001,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.56,
217
+ "learning_rate": 0.0003,
218
+ "loss": 0.0001,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.58,
223
+ "learning_rate": 0.0003,
224
+ "loss": 0.0477,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.59,
229
+ "learning_rate": 0.0003,
230
+ "loss": 0.0001,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.61,
235
+ "learning_rate": 0.0003,
236
+ "loss": 0.0002,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.62,
241
+ "learning_rate": 0.0003,
242
+ "loss": 0.0022,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.64,
247
+ "learning_rate": 0.0003,
248
+ "loss": 0.0001,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.66,
253
+ "learning_rate": 0.0003,
254
+ "loss": 0.0005,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.67,
259
+ "learning_rate": 0.0003,
260
+ "loss": 0.0,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.69,
265
+ "learning_rate": 0.0003,
266
+ "loss": 0.0001,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.7,
271
+ "learning_rate": 0.0003,
272
+ "loss": 0.0001,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.72,
277
+ "learning_rate": 0.0003,
278
+ "loss": 0.0001,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.74,
283
+ "learning_rate": 0.0003,
284
+ "loss": 0.0001,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.75,
289
+ "learning_rate": 0.0003,
290
+ "loss": 0.0001,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.77,
295
+ "learning_rate": 0.0003,
296
+ "loss": 0.0001,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.78,
301
+ "learning_rate": 0.0003,
302
+ "loss": 0.0015,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.8,
307
+ "learning_rate": 0.0003,
308
+ "loss": 0.0001,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.82,
313
+ "learning_rate": 0.0003,
314
+ "loss": 0.0001,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.83,
319
+ "learning_rate": 0.0003,
320
+ "loss": 0.0001,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.85,
325
+ "learning_rate": 0.0003,
326
+ "loss": 0.0001,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.86,
331
+ "learning_rate": 0.0003,
332
+ "loss": 0.0001,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.88,
337
+ "learning_rate": 0.0003,
338
+ "loss": 0.0001,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.9,
343
+ "learning_rate": 0.0003,
344
+ "loss": 0.0001,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.91,
349
+ "learning_rate": 0.0003,
350
+ "loss": 0.0002,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.93,
355
+ "learning_rate": 0.0003,
356
+ "loss": 0.0002,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.94,
361
+ "learning_rate": 0.0003,
362
+ "loss": 0.0001,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.96,
367
+ "learning_rate": 0.0003,
368
+ "loss": 0.0001,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.98,
373
+ "learning_rate": 0.0003,
374
+ "loss": 0.0001,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.99,
379
+ "learning_rate": 0.0003,
380
+ "loss": 0.0,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 1.01,
385
+ "learning_rate": 0.0003,
386
+ "loss": 0.0001,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 1.02,
391
+ "learning_rate": 0.0003,
392
+ "loss": 0.0001,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 1.04,
397
+ "learning_rate": 0.0003,
398
+ "loss": 0.0,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 1.06,
403
+ "learning_rate": 0.0003,
404
+ "loss": 0.0,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 1.07,
409
+ "learning_rate": 0.0003,
410
+ "loss": 0.0,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 1.09,
415
+ "learning_rate": 0.0003,
416
+ "loss": 0.0001,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 1.1,
421
+ "learning_rate": 0.0003,
422
+ "loss": 0.0001,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 1.12,
427
+ "learning_rate": 0.0003,
428
+ "loss": 0.0001,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 1.14,
433
+ "learning_rate": 0.0003,
434
+ "loss": 0.0,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 1.15,
439
+ "learning_rate": 0.0003,
440
+ "loss": 0.0,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 1.17,
445
+ "learning_rate": 0.0003,
446
+ "loss": 0.0,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 1.18,
451
+ "learning_rate": 0.0003,
452
+ "loss": 0.0007,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 1.2,
457
+ "learning_rate": 0.0003,
458
+ "loss": 0.0,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 1.22,
463
+ "learning_rate": 0.0003,
464
+ "loss": 0.0,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 1.23,
469
+ "learning_rate": 0.0003,
470
+ "loss": 0.0,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 1.25,
475
+ "learning_rate": 0.0003,
476
+ "loss": 0.0,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 1.26,
481
+ "learning_rate": 0.0003,
482
+ "loss": 0.0,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 1.28,
487
+ "learning_rate": 0.0003,
488
+ "loss": 0.0001,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 1.3,
493
+ "learning_rate": 0.0003,
494
+ "loss": 0.0,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 1.31,
499
+ "learning_rate": 0.0003,
500
+ "loss": 0.0,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 1.33,
505
+ "learning_rate": 0.0003,
506
+ "loss": 0.0,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 1.34,
511
+ "learning_rate": 0.0003,
512
+ "loss": 0.0,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 1.36,
517
+ "learning_rate": 0.0003,
518
+ "loss": 0.0,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 1.38,
523
+ "learning_rate": 0.0003,
524
+ "loss": 0.0,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 1.39,
529
+ "learning_rate": 0.0003,
530
+ "loss": 0.0,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 1.41,
535
+ "learning_rate": 0.0003,
536
+ "loss": 0.0,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 1.42,
541
+ "learning_rate": 0.0003,
542
+ "loss": 0.0,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 1.44,
547
+ "learning_rate": 0.0003,
548
+ "loss": 0.0,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 1.46,
553
+ "learning_rate": 0.0003,
554
+ "loss": 0.0001,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 1.47,
559
+ "learning_rate": 0.0003,
560
+ "loss": 0.0,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 1.49,
565
+ "learning_rate": 0.0003,
566
+ "loss": 0.0,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 1.5,
571
+ "learning_rate": 0.0003,
572
+ "loss": 0.0,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 1.52,
577
+ "learning_rate": 0.0003,
578
+ "loss": 0.0,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 1.54,
583
+ "learning_rate": 0.0003,
584
+ "loss": 0.0,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 1.55,
589
+ "learning_rate": 0.0003,
590
+ "loss": 0.0,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 1.57,
595
+ "learning_rate": 0.0003,
596
+ "loss": 0.0,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 1.58,
601
+ "learning_rate": 0.0003,
602
+ "loss": 0.0,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 1.6,
607
+ "learning_rate": 0.0003,
608
+ "loss": 0.0002,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 1.62,
613
+ "learning_rate": 0.0003,
614
+ "loss": 0.0,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 1.63,
619
+ "learning_rate": 0.0003,
620
+ "loss": 0.0001,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 1.65,
625
+ "learning_rate": 0.0003,
626
+ "loss": 0.0,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 1.66,
631
+ "learning_rate": 0.0003,
632
+ "loss": 0.0,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 1.68,
637
+ "learning_rate": 0.0003,
638
+ "loss": 0.0,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 1.7,
643
+ "learning_rate": 0.0003,
644
+ "loss": 0.0,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 1.71,
649
+ "learning_rate": 0.0003,
650
+ "loss": 0.0,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 1.73,
655
+ "learning_rate": 0.0003,
656
+ "loss": 0.0,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 1.74,
661
+ "learning_rate": 0.0003,
662
+ "loss": 0.0,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 1.76,
667
+ "learning_rate": 0.0003,
668
+ "loss": 0.0,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 1.78,
673
+ "learning_rate": 0.0003,
674
+ "loss": 0.0,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 1.79,
679
+ "learning_rate": 0.0003,
680
+ "loss": 0.0,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 1.81,
685
+ "learning_rate": 0.0003,
686
+ "loss": 0.0007,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 1.82,
691
+ "learning_rate": 0.0003,
692
+ "loss": 0.0,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 1.84,
697
+ "learning_rate": 0.0003,
698
+ "loss": 0.0,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 1.86,
703
+ "learning_rate": 0.0003,
704
+ "loss": 0.0,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 1.87,
709
+ "learning_rate": 0.0003,
710
+ "loss": 0.0,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 1.89,
715
+ "learning_rate": 0.0003,
716
+ "loss": 0.0,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 1.9,
721
+ "learning_rate": 0.0003,
722
+ "loss": 0.0,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 1.92,
727
+ "learning_rate": 0.0003,
728
+ "loss": 0.0,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 1.94,
733
+ "learning_rate": 0.0003,
734
+ "loss": 0.0,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 1.95,
739
+ "learning_rate": 0.0003,
740
+ "loss": 0.0,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 1.97,
745
+ "learning_rate": 0.0003,
746
+ "loss": 0.0,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 1.98,
751
+ "learning_rate": 0.0003,
752
+ "loss": 0.0,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 2.0,
757
+ "learning_rate": 0.0003,
758
+ "loss": 0.0,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 2.02,
763
+ "learning_rate": 0.0003,
764
+ "loss": 0.0,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 2.03,
769
+ "learning_rate": 0.0003,
770
+ "loss": 0.0,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 2.05,
775
+ "learning_rate": 0.0003,
776
+ "loss": 0.0,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 2.06,
781
+ "learning_rate": 0.0003,
782
+ "loss": 0.0,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 2.08,
787
+ "learning_rate": 0.0003,
788
+ "loss": 0.0,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 2.1,
793
+ "learning_rate": 0.0003,
794
+ "loss": 0.0,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 2.11,
799
+ "learning_rate": 0.0003,
800
+ "loss": 0.0,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 2.13,
805
+ "learning_rate": 0.0003,
806
+ "loss": 0.0,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 2.14,
811
+ "learning_rate": 0.0003,
812
+ "loss": 0.0,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 2.16,
817
+ "learning_rate": 0.0003,
818
+ "loss": 0.0,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 2.18,
823
+ "learning_rate": 0.0003,
824
+ "loss": 0.0,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 2.19,
829
+ "learning_rate": 0.0003,
830
+ "loss": 0.0,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 2.21,
835
+ "learning_rate": 0.0003,
836
+ "loss": 0.0,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 2.22,
841
+ "learning_rate": 0.0003,
842
+ "loss": 0.0,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 2.24,
847
+ "learning_rate": 0.0003,
848
+ "loss": 0.0,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 2.26,
853
+ "learning_rate": 0.0003,
854
+ "loss": 0.0,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 2.27,
859
+ "learning_rate": 0.0003,
860
+ "loss": 0.0,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 2.29,
865
+ "learning_rate": 0.0003,
866
+ "loss": 0.0,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 2.3,
871
+ "learning_rate": 0.0003,
872
+ "loss": 0.0,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 2.32,
877
+ "learning_rate": 0.0003,
878
+ "loss": 0.0,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 2.34,
883
+ "learning_rate": 0.0003,
884
+ "loss": 0.0,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 2.35,
889
+ "learning_rate": 0.0003,
890
+ "loss": 0.0,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 2.37,
895
+ "learning_rate": 0.0003,
896
+ "loss": 0.0,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 2.38,
901
+ "learning_rate": 0.0003,
902
+ "loss": 0.0,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 2.4,
907
+ "learning_rate": 0.0003,
908
+ "loss": 0.0,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 2.42,
913
+ "learning_rate": 0.0003,
914
+ "loss": 0.0,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 2.43,
919
+ "learning_rate": 0.0003,
920
+ "loss": 0.0,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 2.45,
925
+ "learning_rate": 0.0003,
926
+ "loss": 0.0,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 2.46,
931
+ "learning_rate": 0.0003,
932
+ "loss": 0.0,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 2.48,
937
+ "learning_rate": 0.0003,
938
+ "loss": 0.0,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 2.5,
943
+ "learning_rate": 0.0003,
944
+ "loss": 0.0,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 2.51,
949
+ "learning_rate": 0.0003,
950
+ "loss": 0.0,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 2.53,
955
+ "learning_rate": 0.0003,
956
+ "loss": 0.0,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 2.54,
961
+ "learning_rate": 0.0003,
962
+ "loss": 0.0,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 2.56,
967
+ "learning_rate": 0.0003,
968
+ "loss": 0.0,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 2.58,
973
+ "learning_rate": 0.0003,
974
+ "loss": 0.0,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 2.59,
979
+ "learning_rate": 0.0003,
980
+ "loss": 0.0,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 2.61,
985
+ "learning_rate": 0.0003,
986
+ "loss": 0.0,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 2.62,
991
+ "learning_rate": 0.0003,
992
+ "loss": 0.0,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 2.64,
997
+ "learning_rate": 0.0003,
998
+ "loss": 0.0,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 2.66,
1003
+ "learning_rate": 0.0003,
1004
+ "loss": 0.0,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 2.67,
1009
+ "learning_rate": 0.0003,
1010
+ "loss": 0.0,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 2.69,
1015
+ "learning_rate": 0.0003,
1016
+ "loss": 0.0,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 2.7,
1021
+ "learning_rate": 0.0003,
1022
+ "loss": 0.0,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 2.72,
1027
+ "learning_rate": 0.0003,
1028
+ "loss": 0.0,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 2.74,
1033
+ "learning_rate": 0.0003,
1034
+ "loss": 0.0,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 2.75,
1039
+ "learning_rate": 0.0003,
1040
+ "loss": 0.0,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 2.77,
1045
+ "learning_rate": 0.0003,
1046
+ "loss": 0.0,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 2.78,
1051
+ "learning_rate": 0.0003,
1052
+ "loss": 0.0,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 2.8,
1057
+ "learning_rate": 0.0003,
1058
+ "loss": 0.0,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 2.82,
1063
+ "learning_rate": 0.0003,
1064
+ "loss": 0.0,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 2.83,
1069
+ "learning_rate": 0.0003,
1070
+ "loss": 0.0,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 2.85,
1075
+ "learning_rate": 0.0003,
1076
+ "loss": 0.0,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 2.86,
1081
+ "learning_rate": 0.0003,
1082
+ "loss": 0.0,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 2.88,
1087
+ "learning_rate": 0.0003,
1088
+ "loss": 0.0,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 2.9,
1093
+ "learning_rate": 0.0003,
1094
+ "loss": 0.0,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 2.91,
1099
+ "learning_rate": 0.0003,
1100
+ "loss": 0.0,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 2.93,
1105
+ "learning_rate": 0.0003,
1106
+ "loss": 0.0,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 2.94,
1111
+ "learning_rate": 0.0003,
1112
+ "loss": 0.0,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 2.96,
1117
+ "learning_rate": 0.0003,
1118
+ "loss": 0.0,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 2.98,
1123
+ "learning_rate": 0.0003,
1124
+ "loss": 0.0,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 2.99,
1129
+ "learning_rate": 0.0003,
1130
+ "loss": 0.0,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 3.01,
1135
+ "learning_rate": 0.0003,
1136
+ "loss": 0.0,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 3.02,
1141
+ "learning_rate": 0.0003,
1142
+ "loss": 0.0,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 3.04,
1147
+ "learning_rate": 0.0003,
1148
+ "loss": 0.0,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 3.06,
1153
+ "learning_rate": 0.0003,
1154
+ "loss": 0.0,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 3.07,
1159
+ "learning_rate": 0.0003,
1160
+ "loss": 0.0,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 3.09,
1165
+ "learning_rate": 0.0003,
1166
+ "loss": 0.0,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 3.1,
1171
+ "learning_rate": 0.0003,
1172
+ "loss": 0.0,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 3.12,
1177
+ "learning_rate": 0.0003,
1178
+ "loss": 0.0,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 3.14,
1183
+ "learning_rate": 0.0003,
1184
+ "loss": 0.0,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 3.15,
1189
+ "learning_rate": 0.0003,
1190
+ "loss": 0.0,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 3.17,
1195
+ "learning_rate": 0.0003,
1196
+ "loss": 0.0,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 3.18,
1201
+ "learning_rate": 0.0003,
1202
+ "loss": 0.0,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 3.2,
1207
+ "learning_rate": 0.0003,
1208
+ "loss": 0.0,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 3.22,
1213
+ "learning_rate": 0.0003,
1214
+ "loss": 0.0,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 3.23,
1219
+ "learning_rate": 0.0003,
1220
+ "loss": 0.0,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 3.25,
1225
+ "learning_rate": 0.0003,
1226
+ "loss": 0.0,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 3.26,
1231
+ "learning_rate": 0.0003,
1232
+ "loss": 0.0,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 3.28,
1237
+ "learning_rate": 0.0003,
1238
+ "loss": 0.0,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 3.3,
1243
+ "learning_rate": 0.0003,
1244
+ "loss": 0.0,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 3.31,
1249
+ "learning_rate": 0.0003,
1250
+ "loss": 0.0,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 3.33,
1255
+ "learning_rate": 0.0003,
1256
+ "loss": 0.0,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 3.34,
1261
+ "learning_rate": 0.0003,
1262
+ "loss": 0.0,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 3.36,
1267
+ "learning_rate": 0.0003,
1268
+ "loss": 0.0,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 3.38,
1273
+ "learning_rate": 0.0003,
1274
+ "loss": 0.0,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 3.39,
1279
+ "learning_rate": 0.0003,
1280
+ "loss": 0.0,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 3.41,
1285
+ "learning_rate": 0.0003,
1286
+ "loss": 0.0,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 3.42,
1291
+ "learning_rate": 0.0003,
1292
+ "loss": 0.0,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 3.44,
1297
+ "learning_rate": 0.0003,
1298
+ "loss": 0.0,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 3.46,
1303
+ "learning_rate": 0.0003,
1304
+ "loss": 0.0,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 3.47,
1309
+ "learning_rate": 0.0003,
1310
+ "loss": 0.0,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 3.49,
1315
+ "learning_rate": 0.0003,
1316
+ "loss": 0.0,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 3.5,
1321
+ "learning_rate": 0.0003,
1322
+ "loss": 0.0,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 3.52,
1327
+ "learning_rate": 0.0003,
1328
+ "loss": 0.0,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 3.54,
1333
+ "learning_rate": 0.0003,
1334
+ "loss": 0.0,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 3.55,
1339
+ "learning_rate": 0.0003,
1340
+ "loss": 0.0,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 3.57,
1345
+ "learning_rate": 0.0003,
1346
+ "loss": 0.0,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 3.58,
1351
+ "learning_rate": 0.0003,
1352
+ "loss": 0.0,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 3.6,
1357
+ "learning_rate": 0.0003,
1358
+ "loss": 0.0,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 3.62,
1363
+ "learning_rate": 0.0003,
1364
+ "loss": 0.0,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 3.63,
1369
+ "learning_rate": 0.0003,
1370
+ "loss": 0.0,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 3.65,
1375
+ "learning_rate": 0.0003,
1376
+ "loss": 0.0,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 3.66,
1381
+ "learning_rate": 0.0003,
1382
+ "loss": 0.0,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 3.68,
1387
+ "learning_rate": 0.0003,
1388
+ "loss": 0.0,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 3.7,
1393
+ "learning_rate": 0.0003,
1394
+ "loss": 0.0,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 3.71,
1399
+ "learning_rate": 0.0003,
1400
+ "loss": 0.0,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 3.73,
1405
+ "learning_rate": 0.0003,
1406
+ "loss": 0.0,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 3.74,
1411
+ "learning_rate": 0.0003,
1412
+ "loss": 0.0,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 3.76,
1417
+ "learning_rate": 0.0003,
1418
+ "loss": 0.0,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 3.78,
1423
+ "learning_rate": 0.0003,
1424
+ "loss": 0.0,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 3.79,
1429
+ "learning_rate": 0.0003,
1430
+ "loss": 0.0,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 3.81,
1435
+ "learning_rate": 0.0003,
1436
+ "loss": 0.0,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 3.82,
1441
+ "learning_rate": 0.0003,
1442
+ "loss": 0.0,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 3.84,
1447
+ "learning_rate": 0.0003,
1448
+ "loss": 0.0,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 3.86,
1453
+ "learning_rate": 0.0003,
1454
+ "loss": 0.0,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 3.87,
1459
+ "learning_rate": 0.0003,
1460
+ "loss": 0.0,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 3.89,
1465
+ "learning_rate": 0.0003,
1466
+ "loss": 0.0,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 3.9,
1471
+ "learning_rate": 0.0003,
1472
+ "loss": 0.0,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 3.92,
1477
+ "learning_rate": 0.0003,
1478
+ "loss": 0.0,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 3.94,
1483
+ "learning_rate": 0.0003,
1484
+ "loss": 0.0,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 3.95,
1489
+ "learning_rate": 0.0003,
1490
+ "loss": 0.0,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 3.97,
1495
+ "learning_rate": 0.0003,
1496
+ "loss": 0.0,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 3.98,
1501
+ "learning_rate": 0.0003,
1502
+ "loss": 0.0,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 4.0,
1507
+ "learning_rate": 0.0003,
1508
+ "loss": 0.0,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 4.02,
1513
+ "learning_rate": 0.0003,
1514
+ "loss": 0.0,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 4.03,
1519
+ "learning_rate": 0.0003,
1520
+ "loss": 0.0,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 4.05,
1525
+ "learning_rate": 0.0003,
1526
+ "loss": 0.0,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 4.06,
1531
+ "learning_rate": 0.0003,
1532
+ "loss": 0.0,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 4.08,
1537
+ "learning_rate": 0.0003,
1538
+ "loss": 0.0,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 4.1,
1543
+ "learning_rate": 0.0003,
1544
+ "loss": 0.0,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 4.11,
1549
+ "learning_rate": 0.0003,
1550
+ "loss": 0.0,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 4.13,
1555
+ "learning_rate": 0.0003,
1556
+ "loss": 0.0,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 4.14,
1561
+ "learning_rate": 0.0003,
1562
+ "loss": 0.0,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 4.16,
1567
+ "learning_rate": 0.0003,
1568
+ "loss": 0.0,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 4.18,
1573
+ "learning_rate": 0.0003,
1574
+ "loss": 0.0,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 4.19,
1579
+ "learning_rate": 0.0003,
1580
+ "loss": 0.0,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 4.21,
1585
+ "learning_rate": 0.0003,
1586
+ "loss": 0.0,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 4.22,
1591
+ "learning_rate": 0.0003,
1592
+ "loss": 0.0,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 4.24,
1597
+ "learning_rate": 0.0003,
1598
+ "loss": 0.0,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 4.26,
1603
+ "learning_rate": 0.0003,
1604
+ "loss": 0.0,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 4.27,
1609
+ "learning_rate": 0.0003,
1610
+ "loss": 0.0,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 4.29,
1615
+ "learning_rate": 0.0003,
1616
+ "loss": 0.0,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 4.3,
1621
+ "learning_rate": 0.0003,
1622
+ "loss": 0.0,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 4.32,
1627
+ "learning_rate": 0.0003,
1628
+ "loss": 0.0,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 4.34,
1633
+ "learning_rate": 0.0003,
1634
+ "loss": 0.0,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 4.35,
1639
+ "learning_rate": 0.0003,
1640
+ "loss": 0.0,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 4.37,
1645
+ "learning_rate": 0.0003,
1646
+ "loss": 0.0,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 4.38,
1651
+ "learning_rate": 0.0003,
1652
+ "loss": 0.0,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 4.4,
1657
+ "learning_rate": 0.0003,
1658
+ "loss": 0.0,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 4.42,
1663
+ "learning_rate": 0.0003,
1664
+ "loss": 0.0,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 4.43,
1669
+ "learning_rate": 0.0003,
1670
+ "loss": 0.0,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 4.45,
1675
+ "learning_rate": 0.0003,
1676
+ "loss": 0.0,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 4.46,
1681
+ "learning_rate": 0.0003,
1682
+ "loss": 0.0,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 4.48,
1687
+ "learning_rate": 0.0003,
1688
+ "loss": 0.0,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 4.5,
1693
+ "learning_rate": 0.0003,
1694
+ "loss": 0.0,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 4.51,
1699
+ "learning_rate": 0.0003,
1700
+ "loss": 0.0,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 4.53,
1705
+ "learning_rate": 0.0003,
1706
+ "loss": 0.0,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 4.54,
1711
+ "learning_rate": 0.0003,
1712
+ "loss": 0.0,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 4.56,
1717
+ "learning_rate": 0.0003,
1718
+ "loss": 0.0,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 4.58,
1723
+ "learning_rate": 0.0003,
1724
+ "loss": 0.0,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 4.59,
1729
+ "learning_rate": 0.0003,
1730
+ "loss": 0.0,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 4.61,
1735
+ "learning_rate": 0.0003,
1736
+ "loss": 0.0,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 4.62,
1741
+ "learning_rate": 0.0003,
1742
+ "loss": 0.0,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 4.64,
1747
+ "learning_rate": 0.0003,
1748
+ "loss": 0.0,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 4.66,
1753
+ "learning_rate": 0.0003,
1754
+ "loss": 0.0,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 4.67,
1759
+ "learning_rate": 0.0003,
1760
+ "loss": 0.0,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 4.69,
1765
+ "learning_rate": 0.0003,
1766
+ "loss": 0.0,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 4.7,
1771
+ "learning_rate": 0.0003,
1772
+ "loss": 0.0,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 4.72,
1777
+ "learning_rate": 0.0003,
1778
+ "loss": 0.0,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 4.74,
1783
+ "learning_rate": 0.0003,
1784
+ "loss": 0.0,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 4.75,
1789
+ "learning_rate": 0.0003,
1790
+ "loss": 0.0,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 4.77,
1795
+ "learning_rate": 0.0003,
1796
+ "loss": 0.0,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 4.78,
1801
+ "learning_rate": 0.0003,
1802
+ "loss": 0.0,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 4.8,
1807
+ "learning_rate": 0.0003,
1808
+ "loss": 0.0,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 4.82,
1813
+ "learning_rate": 0.0003,
1814
+ "loss": 0.0,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 4.83,
1819
+ "learning_rate": 0.0003,
1820
+ "loss": 0.0,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 4.85,
1825
+ "learning_rate": 0.0003,
1826
+ "loss": 0.0,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 4.86,
1831
+ "learning_rate": 0.0003,
1832
+ "loss": 0.0,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 4.88,
1837
+ "learning_rate": 0.0003,
1838
+ "loss": 0.0,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 4.9,
1843
+ "learning_rate": 0.0003,
1844
+ "loss": 0.0,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 4.91,
1849
+ "learning_rate": 0.0003,
1850
+ "loss": 0.0,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 4.93,
1855
+ "learning_rate": 0.0003,
1856
+ "loss": 0.0,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 4.94,
1861
+ "learning_rate": 0.0003,
1862
+ "loss": 0.0,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 4.96,
1867
+ "learning_rate": 0.0003,
1868
+ "loss": 0.0,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 4.96,
1873
+ "step": 310,
1874
+ "total_flos": 5560623358279680.0,
1875
+ "train_loss": 0.011049593456329838,
1876
+ "train_runtime": 1789.5384,
1877
+ "train_samples_per_second": 2.794,
1878
+ "train_steps_per_second": 0.173
1879
+ }
1880
+ ],
1881
+ "logging_steps": 1.0,
1882
+ "max_steps": 310,
1883
+ "num_input_tokens_seen": 0,
1884
+ "num_train_epochs": 5,
1885
+ "save_steps": 1000,
1886
+ "total_flos": 5560623358279680.0,
1887
+ "train_batch_size": 2,
1888
+ "trial_name": null,
1889
+ "trial_params": null
1890
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dc2c60bc953b5c1b5bf33cb3150c7336cddb6245c71e813c947a01cf5c9d25d
3
+ size 6264