---
language:
- pl
datasets:
- Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish
license: other
model_type: llama-2
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
- TensorBlock
- GGUF
base_model: Aspik101/Vicuzard-30B-Uncensored-instruct-PL-lora_unload
---
## Aspik101/Vicuzard-30B-Uncensored-instruct-PL-lora_unload - GGUF
This repo contains GGUF format model files for [Aspik101/Vicuzard-30B-Uncensored-instruct-PL-lora_unload](https://huggingface.co/Aspik101/Vicuzard-30B-Uncensored-instruct-PL-lora_unload).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985).
## Our projects
## Prompt template
```
Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format.
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q2_K.gguf](https://huggingface.co/tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF/blob/main/Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q2_K.gguf) | Q2_K | 12.049 GB | smallest, significant quality loss - not recommended for most purposes |
| [Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q3_K_S.gguf](https://huggingface.co/tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF/blob/main/Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q3_K_S.gguf) | Q3_K_S | 14.064 GB | very small, high quality loss |
| [Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q3_K_M.gguf](https://huggingface.co/tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF/blob/main/Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q3_K_M.gguf) | Q3_K_M | 15.776 GB | very small, high quality loss |
| [Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q3_K_L.gguf](https://huggingface.co/tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF/blob/main/Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q3_K_L.gguf) | Q3_K_L | 17.280 GB | small, substantial quality loss |
| [Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q4_0.gguf](https://huggingface.co/tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF/blob/main/Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q4_0.gguf) | Q4_0 | 18.356 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q4_K_S.gguf](https://huggingface.co/tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF/blob/main/Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q4_K_S.gguf) | Q4_K_S | 18.482 GB | small, greater quality loss |
| [Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q4_K_M.gguf](https://huggingface.co/tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF/blob/main/Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q4_K_M.gguf) | Q4_K_M | 19.621 GB | medium, balanced quality - recommended |
| [Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q5_0.gguf](https://huggingface.co/tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF/blob/main/Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q5_0.gguf) | Q5_0 | 22.395 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q5_K_S.gguf](https://huggingface.co/tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF/blob/main/Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q5_K_S.gguf) | Q5_K_S | 22.395 GB | large, low quality loss - recommended |
| [Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q5_K_M.gguf](https://huggingface.co/tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF/blob/main/Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q5_K_M.gguf) | Q5_K_M | 23.047 GB | large, very low quality loss - recommended |
| [Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q6_K.gguf](https://huggingface.co/tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF/blob/main/Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q6_K.gguf) | Q6_K | 26.687 GB | very large, extremely low quality loss |
| [Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q8_0.gguf](https://huggingface.co/tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF/blob/main/Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q8_0.gguf) | Q8_0 | 34.565 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF --include "Vicuzard-30B-Uncensored-instruct-PL-lora_unload-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Aspik101_Vicuzard-30B-Uncensored-instruct-PL-lora_unload-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```