--- language: - en - fr - es - ru - zh - ja - fa - code license: mit library_name: transformers tags: - fluently-lm - fluently - prinum - instruct - trained - math - roleplay - reasoning - axolotl - unsloth - argilla - qwen2 - TensorBlock - GGUF datasets: - fluently-sets/ultraset - fluently-sets/ultrathink - fluently-sets/reasoning-1-1k - fluently-sets/MATH-500-Overall inference: true pipeline_tag: text-generation base_model: fluently-lm/FluentlyLM-Prinum model-index: - name: FluentlyLM-Prinum results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 80.9 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 59.48 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 54.0 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 18.23 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 17.26 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 53.42 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum name: Open LLM Leaderboard ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## fluently-lm/FluentlyLM-Prinum - GGUF This repo contains GGUF format model files for [fluently-lm/FluentlyLM-Prinum](https://huggingface.co/fluently-lm/FluentlyLM-Prinum). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [FluentlyLM-Prinum-Q2_K.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q2_K.gguf) | Q2_K | 12.313 GB | smallest, significant quality loss - not recommended for most purposes | | [FluentlyLM-Prinum-Q3_K_S.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q3_K_S.gguf) | Q3_K_S | 14.392 GB | very small, high quality loss | | [FluentlyLM-Prinum-Q3_K_M.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q3_K_M.gguf) | Q3_K_M | 15.935 GB | very small, high quality loss | | [FluentlyLM-Prinum-Q3_K_L.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q3_K_L.gguf) | Q3_K_L | 17.247 GB | small, substantial quality loss | | [FluentlyLM-Prinum-Q4_0.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q4_0.gguf) | Q4_0 | 18.640 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [FluentlyLM-Prinum-Q4_K_S.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q4_K_S.gguf) | Q4_K_S | 18.784 GB | small, greater quality loss | | [FluentlyLM-Prinum-Q4_K_M.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q4_K_M.gguf) | Q4_K_M | 19.851 GB | medium, balanced quality - recommended | | [FluentlyLM-Prinum-Q5_0.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q5_0.gguf) | Q5_0 | 22.638 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [FluentlyLM-Prinum-Q5_K_S.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q5_K_S.gguf) | Q5_K_S | 22.638 GB | large, low quality loss - recommended | | [FluentlyLM-Prinum-Q5_K_M.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q5_K_M.gguf) | Q5_K_M | 23.262 GB | large, very low quality loss - recommended | | [FluentlyLM-Prinum-Q6_K.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q6_K.gguf) | Q6_K | 26.886 GB | very large, extremely low quality loss | | [FluentlyLM-Prinum-Q8_0.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q8_0.gguf) | Q8_0 | 34.821 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/FluentlyLM-Prinum-GGUF --include "FluentlyLM-Prinum-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/FluentlyLM-Prinum-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```