File size: 6,883 Bytes
f6023c9 9c77a91 f6023c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
library_name: transformers
license: llama3.1
base_model: barc0/Llama-3.1-ARC-Heavy-Transduction-8B
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- TensorBlock
- GGUF
datasets:
- barc0/transduction_heavy_100k_jsonl
- barc0/transduction_heavy_suggestfunction_100k_jsonl
model-index:
- name: heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3
results: []
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## barc0/Llama-3.1-ARC-Heavy-Transduction-8B - GGUF
This repo contains GGUF format model files for [barc0/Llama-3.1-ARC-Heavy-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Heavy-Transduction-8B).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
</tr>
</table>
## Prompt template
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Llama-3.1-ARC-Heavy-Transduction-8B-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF/blob/main/Llama-3.1-ARC-Heavy-Transduction-8B-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes |
| [Llama-3.1-ARC-Heavy-Transduction-8B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF/blob/main/Llama-3.1-ARC-Heavy-Transduction-8B-Q3_K_S.gguf) | Q3_K_S | 3.665 GB | very small, high quality loss |
| [Llama-3.1-ARC-Heavy-Transduction-8B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF/blob/main/Llama-3.1-ARC-Heavy-Transduction-8B-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss |
| [Llama-3.1-ARC-Heavy-Transduction-8B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF/blob/main/Llama-3.1-ARC-Heavy-Transduction-8B-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss |
| [Llama-3.1-ARC-Heavy-Transduction-8B-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF/blob/main/Llama-3.1-ARC-Heavy-Transduction-8B-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Llama-3.1-ARC-Heavy-Transduction-8B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF/blob/main/Llama-3.1-ARC-Heavy-Transduction-8B-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss |
| [Llama-3.1-ARC-Heavy-Transduction-8B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF/blob/main/Llama-3.1-ARC-Heavy-Transduction-8B-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended |
| [Llama-3.1-ARC-Heavy-Transduction-8B-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF/blob/main/Llama-3.1-ARC-Heavy-Transduction-8B-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Llama-3.1-ARC-Heavy-Transduction-8B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF/blob/main/Llama-3.1-ARC-Heavy-Transduction-8B-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended |
| [Llama-3.1-ARC-Heavy-Transduction-8B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF/blob/main/Llama-3.1-ARC-Heavy-Transduction-8B-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended |
| [Llama-3.1-ARC-Heavy-Transduction-8B-Q6_K.gguf](https://huggingface.co/tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF/blob/main/Llama-3.1-ARC-Heavy-Transduction-8B-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss |
| [Llama-3.1-ARC-Heavy-Transduction-8B-Q8_0.gguf](https://huggingface.co/tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF/blob/main/Llama-3.1-ARC-Heavy-Transduction-8B-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF --include "Llama-3.1-ARC-Heavy-Transduction-8B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Llama-3.1-ARC-Heavy-Transduction-8B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|