---
license: apache-2.0
language:
- en
- zh
base_model: prithivMLmods/Viper-Coder-v1.5-r999
pipeline_tag: text-generation
library_name: transformers
tags:
- trl
- text-generation-inference
- coder
- viper
- TensorBlock
- GGUF
---
## prithivMLmods/Viper-Coder-v1.5-r999 - GGUF
This repo contains GGUF format model files for [prithivMLmods/Viper-Coder-v1.5-r999](https://huggingface.co/prithivMLmods/Viper-Coder-v1.5-r999).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5).
## Our projects
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Viper-Coder-v1.5-r999-Q2_K.gguf](https://huggingface.co/tensorblock/Viper-Coder-v1.5-r999-GGUF/blob/main/Viper-Coder-v1.5-r999-Q2_K.gguf) | Q2_K | 5.768 GB | smallest, significant quality loss - not recommended for most purposes |
| [Viper-Coder-v1.5-r999-Q3_K_S.gguf](https://huggingface.co/tensorblock/Viper-Coder-v1.5-r999-GGUF/blob/main/Viper-Coder-v1.5-r999-Q3_K_S.gguf) | Q3_K_S | 6.657 GB | very small, high quality loss |
| [Viper-Coder-v1.5-r999-Q3_K_M.gguf](https://huggingface.co/tensorblock/Viper-Coder-v1.5-r999-GGUF/blob/main/Viper-Coder-v1.5-r999-Q3_K_M.gguf) | Q3_K_M | 7.337 GB | very small, high quality loss |
| [Viper-Coder-v1.5-r999-Q3_K_L.gguf](https://huggingface.co/tensorblock/Viper-Coder-v1.5-r999-GGUF/blob/main/Viper-Coder-v1.5-r999-Q3_K_L.gguf) | Q3_K_L | 7.922 GB | small, substantial quality loss |
| [Viper-Coder-v1.5-r999-Q4_0.gguf](https://huggingface.co/tensorblock/Viper-Coder-v1.5-r999-GGUF/blob/main/Viper-Coder-v1.5-r999-Q4_0.gguf) | Q4_0 | 8.515 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Viper-Coder-v1.5-r999-Q4_K_S.gguf](https://huggingface.co/tensorblock/Viper-Coder-v1.5-r999-GGUF/blob/main/Viper-Coder-v1.5-r999-Q4_K_S.gguf) | Q4_K_S | 8.571 GB | small, greater quality loss |
| [Viper-Coder-v1.5-r999-Q4_K_M.gguf](https://huggingface.co/tensorblock/Viper-Coder-v1.5-r999-GGUF/blob/main/Viper-Coder-v1.5-r999-Q4_K_M.gguf) | Q4_K_M | 8.985 GB | medium, balanced quality - recommended |
| [Viper-Coder-v1.5-r999-Q5_0.gguf](https://huggingface.co/tensorblock/Viper-Coder-v1.5-r999-GGUF/blob/main/Viper-Coder-v1.5-r999-Q5_0.gguf) | Q5_0 | 10.263 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Viper-Coder-v1.5-r999-Q5_K_S.gguf](https://huggingface.co/tensorblock/Viper-Coder-v1.5-r999-GGUF/blob/main/Viper-Coder-v1.5-r999-Q5_K_S.gguf) | Q5_K_S | 10.263 GB | large, low quality loss - recommended |
| [Viper-Coder-v1.5-r999-Q5_K_M.gguf](https://huggingface.co/tensorblock/Viper-Coder-v1.5-r999-GGUF/blob/main/Viper-Coder-v1.5-r999-Q5_K_M.gguf) | Q5_K_M | 10.506 GB | large, very low quality loss - recommended |
| [Viper-Coder-v1.5-r999-Q6_K.gguf](https://huggingface.co/tensorblock/Viper-Coder-v1.5-r999-GGUF/blob/main/Viper-Coder-v1.5-r999-Q6_K.gguf) | Q6_K | 12.121 GB | very large, extremely low quality loss |
| [Viper-Coder-v1.5-r999-Q8_0.gguf](https://huggingface.co/tensorblock/Viper-Coder-v1.5-r999-GGUF/blob/main/Viper-Coder-v1.5-r999-Q8_0.gguf) | Q8_0 | 15.697 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Viper-Coder-v1.5-r999-GGUF --include "Viper-Coder-v1.5-r999-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Viper-Coder-v1.5-r999-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```