File size: 8,305 Bytes
4f10a60 63c8a7d 4f10a60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
datasets:
- codeparrot/github-code-clean
- bigcode/starcoderdata
- open-web-math/open-web-math
- math-ai/StackMathQA
metrics:
- code_eval
library_name: transformers
tags:
- code
- granite
- TensorBlock
- GGUF
base_model: ibm-granite/granite-3b-code-base-128k
model-index:
- name: granite-3b-code-base-128k
results:
- task:
type: text-generation
dataset:
name: HumanEvalSynthesis (Python)
type: bigcode/humanevalpack
metrics:
- type: pass@1
value: 36.0
name: pass@1
verified: false
- type: pass@1
value: 30.5
name: pass@1
verified: false
- type: pass@1
value: 22.4
name: pass@1
verified: false
- type: pass@1
value: 19.9
name: pass@1
verified: false
- task:
type: text-generation
dataset:
name: RepoQA (Python@16K)
type: repoqa
metrics:
- type: pass@1 (thresh=0.5)
value: 40.0
name: pass@1 (thresh=0.5)
verified: false
- type: pass@1 (thresh=0.5)
value: 36.0
name: pass@1 (thresh=0.5)
verified: false
- type: pass@1 (thresh=0.5)
value: 37.0
name: pass@1 (thresh=0.5)
verified: false
- type: pass@1 (thresh=0.5)
value: 27.0
name: pass@1 (thresh=0.5)
verified: false
- type: pass@1 (thresh=0.5)
value: 29.0
name: pass@1 (thresh=0.5)
verified: false
- task:
type: text-generation
dataset:
name: LCC (Balanced)
type: lcc
metrics:
- type: Exact Match@4K
value: 54.6
name: Exact Match@4K
verified: false
- type: Exact Match@8K
value: 56.8
name: Exact Match@8K
verified: false
- type: Exact Match@16K
value: 52.2
name: Exact Match@16K
verified: false
- type: Exact Match@32K
value: 57.8
name: Exact Match@32K
verified: false
- task:
type: text-generation
dataset:
name: RepoBench-P (Balanced)
type: repobench
metrics:
- type: Exact Match@4K
value: 39.8
name: Exact Match@4K
verified: false
- type: Exact Match@8K
value: 46.8
name: Exact Match@8K
verified: false
- type: Exact Match@16K
value: 43.1
name: Exact Match@16K
verified: false
- type: Exact Match@32K
value: 45.3
name: Exact Match@32K
verified: false
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## ibm-granite/granite-3b-code-base-128k - GGUF
This repo contains GGUF format model files for [ibm-granite/granite-3b-code-base-128k](https://huggingface.co/ibm-granite/granite-3b-code-base-128k).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
</tr>
</table>
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [granite-3b-code-base-128k-Q2_K.gguf](https://huggingface.co/tensorblock/granite-3b-code-base-128k-GGUF/blob/main/granite-3b-code-base-128k-Q2_K.gguf) | Q2_K | 1.339 GB | smallest, significant quality loss - not recommended for most purposes |
| [granite-3b-code-base-128k-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-3b-code-base-128k-GGUF/blob/main/granite-3b-code-base-128k-Q3_K_S.gguf) | Q3_K_S | 1.552 GB | very small, high quality loss |
| [granite-3b-code-base-128k-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-3b-code-base-128k-GGUF/blob/main/granite-3b-code-base-128k-Q3_K_M.gguf) | Q3_K_M | 1.727 GB | very small, high quality loss |
| [granite-3b-code-base-128k-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-3b-code-base-128k-GGUF/blob/main/granite-3b-code-base-128k-Q3_K_L.gguf) | Q3_K_L | 1.876 GB | small, substantial quality loss |
| [granite-3b-code-base-128k-Q4_0.gguf](https://huggingface.co/tensorblock/granite-3b-code-base-128k-GGUF/blob/main/granite-3b-code-base-128k-Q4_0.gguf) | Q4_0 | 1.997 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [granite-3b-code-base-128k-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-3b-code-base-128k-GGUF/blob/main/granite-3b-code-base-128k-Q4_K_S.gguf) | Q4_K_S | 2.014 GB | small, greater quality loss |
| [granite-3b-code-base-128k-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-3b-code-base-128k-GGUF/blob/main/granite-3b-code-base-128k-Q4_K_M.gguf) | Q4_K_M | 2.132 GB | medium, balanced quality - recommended |
| [granite-3b-code-base-128k-Q5_0.gguf](https://huggingface.co/tensorblock/granite-3b-code-base-128k-GGUF/blob/main/granite-3b-code-base-128k-Q5_0.gguf) | Q5_0 | 2.417 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [granite-3b-code-base-128k-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-3b-code-base-128k-GGUF/blob/main/granite-3b-code-base-128k-Q5_K_S.gguf) | Q5_K_S | 2.417 GB | large, low quality loss - recommended |
| [granite-3b-code-base-128k-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-3b-code-base-128k-GGUF/blob/main/granite-3b-code-base-128k-Q5_K_M.gguf) | Q5_K_M | 2.486 GB | large, very low quality loss - recommended |
| [granite-3b-code-base-128k-Q6_K.gguf](https://huggingface.co/tensorblock/granite-3b-code-base-128k-GGUF/blob/main/granite-3b-code-base-128k-Q6_K.gguf) | Q6_K | 2.862 GB | very large, extremely low quality loss |
| [granite-3b-code-base-128k-Q8_0.gguf](https://huggingface.co/tensorblock/granite-3b-code-base-128k-GGUF/blob/main/granite-3b-code-base-128k-Q8_0.gguf) | Q8_0 | 3.706 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/granite-3b-code-base-128k-GGUF --include "granite-3b-code-base-128k-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/granite-3b-code-base-128k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|