File size: 3,682 Bytes
6e480b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ce6506
6e480b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ce6506
6e480b7
 
 
 
 
e752992
 
 
 
 
 
 
 
 
 
f1e6e60
 
 
 
 
 
 
 
 
 
7b766c7
 
 
 
 
 
 
 
 
 
0ce6506
 
 
 
 
 
 
 
 
 
 
 
 
 
6e480b7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: sparse_llama_7b_hf2_refined_web_50p_2024-03-27
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sparse_llama_7b_hf2_refined_web_50p_2024-03-27

This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0766

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 4
- seed: 0
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1100

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1821        | 0.01  | 25   | 2.2632          |
| 2.1824        | 0.02  | 50   | 2.2610          |
| 2.2916        | 0.02  | 75   | 2.2561          |
| 2.2562        | 0.03  | 100  | 2.2484          |
| 2.3387        | 0.04  | 125  | 2.2453          |
| 2.1762        | 0.05  | 150  | 2.2402          |
| 2.1439        | 0.06  | 175  | 2.2353          |
| 2.3081        | 0.06  | 200  | 2.2326          |
| 2.268         | 0.07  | 225  | 2.2300          |
| 2.2193        | 0.08  | 250  | 2.2303          |
| 2.1589        | 0.09  | 275  | 2.2296          |
| 2.1932        | 0.1   | 300  | 2.2276          |
| 2.2406        | 0.1   | 325  | 2.2271          |
| 2.2102        | 0.11  | 350  | 2.2289          |
| 2.1311        | 0.12  | 375  | 2.2272          |
| 2.2318        | 0.13  | 400  | 2.2269          |
| 2.2155        | 0.14  | 425  | 2.2273          |
| 2.1799        | 0.14  | 450  | 2.2267          |
| 2.252         | 0.15  | 475  | 2.2250          |
| 2.2588        | 0.16  | 500  | 2.2262          |
| 2.1677        | 0.17  | 525  | 2.2271          |
| 2.163         | 0.18  | 550  | 2.2264          |
| 2.2783        | 0.18  | 575  | 2.2251          |
| 2.1625        | 0.19  | 600  | 2.2253          |
| 2.1906        | 0.2   | 625  | 2.2251          |
| 2.2748        | 0.21  | 650  | 2.2251          |
| 2.171         | 0.22  | 675  | 2.2249          |
| 2.1929        | 0.22  | 700  | 2.2252          |
| 2.2203        | 0.23  | 725  | 2.2232          |
| 2.1143        | 0.24  | 750  | 2.2239          |
| 2.1969        | 0.25  | 775  | 2.2230          |
| 2.2492        | 0.26  | 800  | 2.2233          |
| 2.1988        | 0.26  | 825  | 2.2240          |
| 2.1546        | 0.27  | 850  | 2.2245          |
| 2.1605        | 0.28  | 875  | 2.2229          |
| 2.1417        | 0.29  | 900  | 2.2224          |
| 2.3172        | 0.3   | 925  | 2.2247          |
| 2.2799        | 0.3   | 950  | 2.2240          |
| 2.2258        | 0.31  | 975  | 2.2221          |
| 2.1175        | 0.32  | 1000 | 2.2216          |
| 2.2314        | 0.33  | 1025 | 2.2227          |
| 2.1956        | 0.34  | 1050 | 2.2211          |
| 2.1695        | 0.34  | 1075 | 2.2206          |
| 2.1658        | 0.35  | 1100 | 2.2207          |


### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.2