tomaarsen HF staff commited on
Commit
7435cd0
·
verified ·
1 Parent(s): 1c865dd

Add new CrossEncoder model

Browse files
Files changed (7) hide show
  1. README.md +631 -0
  2. config.json +34 -0
  3. model.safetensors +3 -0
  4. special_tokens_map.json +37 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +65 -0
  7. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,631 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - cross-encoder
5
+ - generated_from_trainer
6
+ - dataset_size:399282
7
+ - loss:LambdaLoss
8
+ base_model: microsoft/MiniLM-L12-H384-uncased
9
+ pipeline_tag: text-ranking
10
+ library_name: sentence-transformers
11
+ metrics:
12
+ - map
13
+ - mrr@10
14
+ - ndcg@10
15
+ co2_eq_emissions:
16
+ emissions: 860.698080594824
17
+ energy_consumed: 2.214287759246991
18
+ source: codecarbon
19
+ training_type: fine-tuning
20
+ on_cloud: false
21
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
22
+ ram_total_size: 31.777088165283203
23
+ hours_used: 7.301
24
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
25
+ model-index:
26
+ - name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
27
+ results:
28
+ - task:
29
+ type: cross-encoder-reranking
30
+ name: Cross Encoder Reranking
31
+ dataset:
32
+ name: NanoMSMARCO R100
33
+ type: NanoMSMARCO_R100
34
+ metrics:
35
+ - type: map
36
+ value: 0.6352
37
+ name: Map
38
+ - type: mrr@10
39
+ value: 0.6298
40
+ name: Mrr@10
41
+ - type: ndcg@10
42
+ value: 0.6981
43
+ name: Ndcg@10
44
+ - task:
45
+ type: cross-encoder-reranking
46
+ name: Cross Encoder Reranking
47
+ dataset:
48
+ name: NanoNFCorpus R100
49
+ type: NanoNFCorpus_R100
50
+ metrics:
51
+ - type: map
52
+ value: 0.3389
53
+ name: Map
54
+ - type: mrr@10
55
+ value: 0.5872
56
+ name: Mrr@10
57
+ - type: ndcg@10
58
+ value: 0.4036
59
+ name: Ndcg@10
60
+ - task:
61
+ type: cross-encoder-reranking
62
+ name: Cross Encoder Reranking
63
+ dataset:
64
+ name: NanoNQ R100
65
+ type: NanoNQ_R100
66
+ metrics:
67
+ - type: map
68
+ value: 0.7174
69
+ name: Map
70
+ - type: mrr@10
71
+ value: 0.7283
72
+ name: Mrr@10
73
+ - type: ndcg@10
74
+ value: 0.7584
75
+ name: Ndcg@10
76
+ - task:
77
+ type: cross-encoder-nano-beir
78
+ name: Cross Encoder Nano BEIR
79
+ dataset:
80
+ name: NanoBEIR R100 mean
81
+ type: NanoBEIR_R100_mean
82
+ metrics:
83
+ - type: map
84
+ value: 0.5638
85
+ name: Map
86
+ - type: mrr@10
87
+ value: 0.6485
88
+ name: Mrr@10
89
+ - type: ndcg@10
90
+ value: 0.62
91
+ name: Ndcg@10
92
+ ---
93
+
94
+ # CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
95
+
96
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
97
+
98
+ ## Model Details
99
+
100
+ ### Model Description
101
+ - **Model Type:** Cross Encoder
102
+ - **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
103
+ - **Maximum Sequence Length:** 512 tokens
104
+ - **Number of Output Labels:** 1 label
105
+ <!-- - **Training Dataset:** Unknown -->
106
+ <!-- - **Language:** Unknown -->
107
+ <!-- - **License:** Unknown -->
108
+
109
+ ### Model Sources
110
+
111
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
112
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
113
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
114
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
115
+
116
+ ## Usage
117
+
118
+ ### Direct Usage (Sentence Transformers)
119
+
120
+ First install the Sentence Transformers library:
121
+
122
+ ```bash
123
+ pip install -U sentence-transformers
124
+ ```
125
+
126
+ Then you can load this model and run inference.
127
+ ```python
128
+ from sentence_transformers import CrossEncoder
129
+
130
+ # Download from the 🤗 Hub
131
+ model = CrossEncoder("tomaarsen/reranker-msmarco-MiniLM-L12-H384-uncased-lambdaloss")
132
+ # Get scores for pairs of texts
133
+ pairs = [
134
+ ['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'],
135
+ ['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'],
136
+ ['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'],
137
+ ]
138
+ scores = model.predict(pairs)
139
+ print(scores.shape)
140
+ # (3,)
141
+
142
+ # Or rank different texts based on similarity to a single text
143
+ ranks = model.rank(
144
+ 'How many calories in an egg',
145
+ [
146
+ 'There are on average between 55 and 80 calories in an egg depending on its size.',
147
+ 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.',
148
+ 'Most of the calories in an egg come from the yellow yolk in the center.',
149
+ ]
150
+ )
151
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
152
+ ```
153
+
154
+ <!--
155
+ ### Direct Usage (Transformers)
156
+
157
+ <details><summary>Click to see the direct usage in Transformers</summary>
158
+
159
+ </details>
160
+ -->
161
+
162
+ <!--
163
+ ### Downstream Usage (Sentence Transformers)
164
+
165
+ You can finetune this model on your own dataset.
166
+
167
+ <details><summary>Click to expand</summary>
168
+
169
+ </details>
170
+ -->
171
+
172
+ <!--
173
+ ### Out-of-Scope Use
174
+
175
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
176
+ -->
177
+
178
+ ## Evaluation
179
+
180
+ ### Metrics
181
+
182
+ #### Cross Encoder Reranking
183
+
184
+ * Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
185
+ * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
186
+ ```json
187
+ {
188
+ "at_k": 10,
189
+ "always_rerank_positives": true
190
+ }
191
+ ```
192
+
193
+ | Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
194
+ |:------------|:---------------------|:---------------------|:---------------------|
195
+ | map | 0.6352 (+0.1456) | 0.3389 (+0.0779) | 0.7174 (+0.2978) |
196
+ | mrr@10 | 0.6298 (+0.1523) | 0.5872 (+0.0874) | 0.7283 (+0.3016) |
197
+ | **ndcg@10** | **0.6981 (+0.1577)** | **0.4036 (+0.0786)** | **0.7584 (+0.2577)** |
198
+
199
+ #### Cross Encoder Nano BEIR
200
+
201
+ * Dataset: `NanoBEIR_R100_mean`
202
+ * Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
203
+ ```json
204
+ {
205
+ "dataset_names": [
206
+ "msmarco",
207
+ "nfcorpus",
208
+ "nq"
209
+ ],
210
+ "rerank_k": 100,
211
+ "at_k": 10,
212
+ "always_rerank_positives": true
213
+ }
214
+ ```
215
+
216
+ | Metric | Value |
217
+ |:------------|:---------------------|
218
+ | map | 0.5638 (+0.1738) |
219
+ | mrr@10 | 0.6485 (+0.1805) |
220
+ | **ndcg@10** | **0.6200 (+0.1647)** |
221
+
222
+ <!--
223
+ ## Bias, Risks and Limitations
224
+
225
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
226
+ -->
227
+
228
+ <!--
229
+ ### Recommendations
230
+
231
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
232
+ -->
233
+
234
+ ## Training Details
235
+
236
+ ### Training Dataset
237
+
238
+ #### Unnamed Dataset
239
+
240
+ * Size: 399,282 training samples
241
+ * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
242
+ * Approximate statistics based on the first 1000 samples:
243
+ | | query | docs | labels |
244
+ |:--------|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|
245
+ | type | string | list | list |
246
+ | details | <ul><li>min: 6 characters</li><li>mean: 33.0 characters</li><li>max: 154 characters</li></ul> | <ul><li>min: 6 elements</li><li>mean: 13.23 elements</li><li>max: 20 elements</li></ul> | <ul><li>min: 6 elements</li><li>mean: 13.23 elements</li><li>max: 20 elements</li></ul> |
247
+ * Samples:
248
+ | query | docs | labels |
249
+ |:-----------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
250
+ | <code>intel current gen core processors</code> | <code>["Identical or more capable versions of Core processors are also sold as Xeon processors for the server and workstation markets. As of 2017 the current lineup of Core processors included the Intel Core i7, Intel Core i5, and Intel Core i3, along with the Y - Series Intel Core CPU's.", "Most noticeably that Panasonic switched from Intel Core 2 Duo power to the latest Intel Core i3 and i5 processors. The three processors available in the new Toughbook 31, together with the new Mobile Intel QM57 Express chipset, are all part of Intel's Calpella platform.", 'The new 7th Gen Intel Core i7-7700HQ processor gives the 14-inch Razer Blade 2.8GHz of quad-core processing power and Turbo Boost speeds, which automatically increases the speed of active cores â\x80\x93 up to 3.8GHz.', 'Key difference: Intel Core i3 is a type of dual-core processor. i5 processors have 2 to 4 cores. A dual-core processor is a type of a central processing unit (CPU) that has two complete execution cores. Hence, it has t...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
251
+ | <code>renovation definition</code> | <code>['Renovation is the act of renewing or restoring something. If your kitchen is undergoing a renovation, thereâ\x80\x99s probably plaster and paint all over the place and you should probably get take-out.', 'NEW GALLERY SPACES OPENING IN 2017. In early 2017, our fourth floor will be transformed into a new destination for historical education and innovation. During the current renovation, objects from our permanent collection are on view throughout the Museum.', 'A same level house extension in Australia will cost approximately $60,000 to $200,000+. Adding a room or extending your living area on the ground floor are affordable ways of creating more space.Here are some key points to consider that will help you keep your renovation costs in check.RTICLE Stephanie Matheson. A same level house extension in Australia will cost approximately $60,000 to $200,000+. Adding a room or extending your living area on the ground floor are affordable ways of creating more space. Here are some key points...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
252
+ | <code>what is a girasol</code> | <code>['Girasol definition, an opal that reflects light in a bright luminous glow. See more.', 'Also, a type of opal from Mexico, referred to as Mexican water opal, is a colorless opal which exhibits either a bluish or golden internal sheen. Girasol opal is a term sometimes mistakenly and improperly used to refer to fire opals, as well as a type of transparent to semitransparent type milky quartz from Madagascar which displays an asterism, or star effect, when cut properly.', 'What is the meaning of Girasol? How popular is the baby name Girasol? Learn the origin and popularity plus how to pronounce Girasol', 'There are 5 basic types of opal. These types are Peruvian Opal, Fire Opal, Girasol Opal, Common opal and Precious Opal. There are 5 basic types of opal. These types are Peruvian Opal, Fire Opal, Girasol Opal, Common opal and Precious Opal.', 'girasol (Ë\x88dÊ\x92ɪrÉ\x99Ë\x8csÉ\x92l; -Ë\x8csÉ\x99Ê\x8al) , girosol or girasole n (Jewellery) a type of opal that has a red or pink glow in br...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
253
+ * Loss: [<code>LambdaLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#lambdaloss) with these parameters:
254
+ ```json
255
+ {
256
+ "weighting_scheme": "sentence_transformers.cross_encoder.losses.LambdaLoss.NDCGLoss2PPScheme",
257
+ "k": null,
258
+ "sigma": 1.0,
259
+ "eps": 1e-10,
260
+ "reduction_log": "binary",
261
+ "activation_fct": "torch.nn.modules.linear.Identity",
262
+ "mini_batch_size": 16
263
+ }
264
+ ```
265
+
266
+ ### Evaluation Dataset
267
+
268
+ #### Unnamed Dataset
269
+
270
+ * Size: 1,000 evaluation samples
271
+ * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
272
+ * Approximate statistics based on the first 1000 samples:
273
+ | | query | docs | labels |
274
+ |:--------|:------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|
275
+ | type | string | list | list |
276
+ | details | <ul><li>min: 10 characters</li><li>mean: 33.63 characters</li><li>max: 137 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 12.50 elements</li><li>max: 20 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 12.50 elements</li><li>max: 20 elements</li></ul> |
277
+ * Samples:
278
+ | query | docs | labels |
279
+ |:----------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
280
+ | <code>can marijuana help dementia</code> | <code>["Cannabis 'could stop dementia in its tracks'. Cannabis may help keep Alzheimer's disease at bay. In experiments, a marijuana-based medicine triggered the formation of new brain cells and cut inflammation linked to dementia. The researchers say that using the information to create a pill suitable for people could help prevent or delay the onset of Alzheimer's.", 'Marijuana (cannabis): Marijuana in any form is not allowed on aircraft and is not allowed in the secure part of the airport (beyond the TSA screening areas). In addition it is illegal to import marijuana or marijuana-related items into the US.', 'Depakote and dementia - Can dementia be cured? Unfortunately, no. Dementia is a progressive disease. Even available treatments only slow progression or tame symptoms.', 'Marijuana Prices. The price of marijuana listed below is the typical price to buy marijuana on the black market in U.S. dollars. How much marijuana cost and the sale price of marijuana are based upon the United Natio...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
281
+ | <code>what are carcinogen</code> | <code>['Written By: Carcinogen, any of a number of agents that can cause cancer in humans. They can be divided into three major categories: chemical carcinogens (including those from biological sources), physical carcinogens, and oncogenic (cancer-causing) viruses. 1 Most carcinogens, singly or in combination, produce cancer by interacting with DNA in cells and thereby interfering with normal cellular function.', 'Tarragon (Artemisia dracunculus) is a species of perennial herb in the sunflower family. It is widespread in the wild across much of Eurasia and North America, and is cultivated for culinary and medicinal purposes in many lands.One sub-species, Artemisia dracunculus var. sativa, is cultivated for use of the leaves as an aromatic culinary herb.arragon has an aromatic property reminiscent of anise, due to the presence of estragole, a known carcinogen and teratogen in mice. The European Union investigation revealed that the danger of estragole is minimal even at 100â\x80\x931,000 tim...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
282
+ | <code>who played ben geller in friends</code> | <code>["Noelle and Cali aren't the only twins to have played one child character in Friends. Double vision: Ross' cheeky son Ben (pictured), from his first marriage to Carol, was also played by twins, Dylan and Cole Sprouse, who are now 22.", 'Update 7/29/06: There are now three â\x80\x9cTeaching Pastorsâ\x80\x9d at Applegate Christian Fellowship, according to their web site. Jon Courson is now back at Applegate. The other two listed as Teaching Pastors are Jonâ\x80\x99s two sons: Peter John and Ben Courson.on Courson has been appreciated over the years by many people who are my friends and whom I respect. I believe that he preaches the real Jesus and the true Gospel, for which I rejoice. I also believe that his ministry and church organization is a reasonable example with which to examine important issues together.', 'Ben 10 (Reboot) Ben 10: Omniverse is the fourth iteration of the Ben 10 franchise, and it is the sequel of Ben 10: Ultimate Alien. Ben was all set to be a solo hero with his n...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
283
+ * Loss: [<code>LambdaLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#lambdaloss) with these parameters:
284
+ ```json
285
+ {
286
+ "weighting_scheme": "sentence_transformers.cross_encoder.losses.LambdaLoss.NDCGLoss2PPScheme",
287
+ "k": null,
288
+ "sigma": 1.0,
289
+ "eps": 1e-10,
290
+ "reduction_log": "binary",
291
+ "activation_fct": "torch.nn.modules.linear.Identity",
292
+ "mini_batch_size": 16
293
+ }
294
+ ```
295
+
296
+ ### Training Hyperparameters
297
+ #### Non-Default Hyperparameters
298
+
299
+ - `eval_strategy`: steps
300
+ - `per_device_train_batch_size`: 16
301
+ - `per_device_eval_batch_size`: 16
302
+ - `learning_rate`: 2e-05
303
+ - `num_train_epochs`: 1
304
+ - `warmup_ratio`: 0.1
305
+ - `seed`: 12
306
+ - `bf16`: True
307
+ - `load_best_model_at_end`: True
308
+
309
+ #### All Hyperparameters
310
+ <details><summary>Click to expand</summary>
311
+
312
+ - `overwrite_output_dir`: False
313
+ - `do_predict`: False
314
+ - `eval_strategy`: steps
315
+ - `prediction_loss_only`: True
316
+ - `per_device_train_batch_size`: 16
317
+ - `per_device_eval_batch_size`: 16
318
+ - `per_gpu_train_batch_size`: None
319
+ - `per_gpu_eval_batch_size`: None
320
+ - `gradient_accumulation_steps`: 1
321
+ - `eval_accumulation_steps`: None
322
+ - `torch_empty_cache_steps`: None
323
+ - `learning_rate`: 2e-05
324
+ - `weight_decay`: 0.0
325
+ - `adam_beta1`: 0.9
326
+ - `adam_beta2`: 0.999
327
+ - `adam_epsilon`: 1e-08
328
+ - `max_grad_norm`: 1.0
329
+ - `num_train_epochs`: 1
330
+ - `max_steps`: -1
331
+ - `lr_scheduler_type`: linear
332
+ - `lr_scheduler_kwargs`: {}
333
+ - `warmup_ratio`: 0.1
334
+ - `warmup_steps`: 0
335
+ - `log_level`: passive
336
+ - `log_level_replica`: warning
337
+ - `log_on_each_node`: True
338
+ - `logging_nan_inf_filter`: True
339
+ - `save_safetensors`: True
340
+ - `save_on_each_node`: False
341
+ - `save_only_model`: False
342
+ - `restore_callback_states_from_checkpoint`: False
343
+ - `no_cuda`: False
344
+ - `use_cpu`: False
345
+ - `use_mps_device`: False
346
+ - `seed`: 12
347
+ - `data_seed`: None
348
+ - `jit_mode_eval`: False
349
+ - `use_ipex`: False
350
+ - `bf16`: True
351
+ - `fp16`: False
352
+ - `fp16_opt_level`: O1
353
+ - `half_precision_backend`: auto
354
+ - `bf16_full_eval`: False
355
+ - `fp16_full_eval`: False
356
+ - `tf32`: None
357
+ - `local_rank`: 0
358
+ - `ddp_backend`: None
359
+ - `tpu_num_cores`: None
360
+ - `tpu_metrics_debug`: False
361
+ - `debug`: []
362
+ - `dataloader_drop_last`: False
363
+ - `dataloader_num_workers`: 0
364
+ - `dataloader_prefetch_factor`: None
365
+ - `past_index`: -1
366
+ - `disable_tqdm`: False
367
+ - `remove_unused_columns`: True
368
+ - `label_names`: None
369
+ - `load_best_model_at_end`: True
370
+ - `ignore_data_skip`: False
371
+ - `fsdp`: []
372
+ - `fsdp_min_num_params`: 0
373
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
374
+ - `fsdp_transformer_layer_cls_to_wrap`: None
375
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
376
+ - `deepspeed`: None
377
+ - `label_smoothing_factor`: 0.0
378
+ - `optim`: adamw_torch
379
+ - `optim_args`: None
380
+ - `adafactor`: False
381
+ - `group_by_length`: False
382
+ - `length_column_name`: length
383
+ - `ddp_find_unused_parameters`: None
384
+ - `ddp_bucket_cap_mb`: None
385
+ - `ddp_broadcast_buffers`: False
386
+ - `dataloader_pin_memory`: True
387
+ - `dataloader_persistent_workers`: False
388
+ - `skip_memory_metrics`: True
389
+ - `use_legacy_prediction_loop`: False
390
+ - `push_to_hub`: False
391
+ - `resume_from_checkpoint`: None
392
+ - `hub_model_id`: None
393
+ - `hub_strategy`: every_save
394
+ - `hub_private_repo`: None
395
+ - `hub_always_push`: False
396
+ - `gradient_checkpointing`: False
397
+ - `gradient_checkpointing_kwargs`: None
398
+ - `include_inputs_for_metrics`: False
399
+ - `include_for_metrics`: []
400
+ - `eval_do_concat_batches`: True
401
+ - `fp16_backend`: auto
402
+ - `push_to_hub_model_id`: None
403
+ - `push_to_hub_organization`: None
404
+ - `mp_parameters`:
405
+ - `auto_find_batch_size`: False
406
+ - `full_determinism`: False
407
+ - `torchdynamo`: None
408
+ - `ray_scope`: last
409
+ - `ddp_timeout`: 1800
410
+ - `torch_compile`: False
411
+ - `torch_compile_backend`: None
412
+ - `torch_compile_mode`: None
413
+ - `dispatch_batches`: None
414
+ - `split_batches`: None
415
+ - `include_tokens_per_second`: False
416
+ - `include_num_input_tokens_seen`: False
417
+ - `neftune_noise_alpha`: None
418
+ - `optim_target_modules`: None
419
+ - `batch_eval_metrics`: False
420
+ - `eval_on_start`: False
421
+ - `use_liger_kernel`: False
422
+ - `eval_use_gather_object`: False
423
+ - `average_tokens_across_devices`: False
424
+ - `prompts`: None
425
+ - `batch_sampler`: batch_sampler
426
+ - `multi_dataset_batch_sampler`: proportional
427
+
428
+ </details>
429
+
430
+ ### Training Logs
431
+ <details><summary>Click to expand</summary>
432
+
433
+ | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
434
+ |:----------:|:---------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
435
+ | -1 | -1 | - | - | 0.0086 (-0.5318) | 0.2639 (-0.0612) | 0.0000 (-0.5006) | 0.0908 (-0.3645) |
436
+ | 0.0000 | 1 | 0.8912 | - | - | - | - | - |
437
+ | 0.0080 | 200 | 0.8246 | - | - | - | - | - |
438
+ | 0.0160 | 400 | 0.8117 | - | - | - | - | - |
439
+ | 0.0240 | 600 | 0.4376 | - | - | - | - | - |
440
+ | 0.0321 | 800 | 0.3271 | - | - | - | - | - |
441
+ | 0.0401 | 1000 | 0.2819 | 0.2442 | 0.6288 (+0.0884) | 0.4289 (+0.1039) | 0.7117 (+0.2111) | 0.5898 (+0.1344) |
442
+ | 0.0481 | 1200 | 0.24 | - | - | - | - | - |
443
+ | 0.0561 | 1400 | 0.2296 | - | - | - | - | - |
444
+ | 0.0641 | 1600 | 0.2244 | - | - | - | - | - |
445
+ | 0.0721 | 1800 | 0.2057 | - | - | - | - | - |
446
+ | 0.0801 | 2000 | 0.1947 | 0.1775 | 0.6251 (+0.0846) | 0.4318 (+0.1068) | 0.7111 (+0.2105) | 0.5893 (+0.1340) |
447
+ | 0.0882 | 2200 | 0.1939 | - | - | - | - | - |
448
+ | 0.0962 | 2400 | 0.1996 | - | - | - | - | - |
449
+ | 0.1042 | 2600 | 0.1938 | - | - | - | - | - |
450
+ | 0.1122 | 2800 | 0.1928 | - | - | - | - | - |
451
+ | 0.1202 | 3000 | 0.1915 | 0.1684 | 0.6226 (+0.0822) | 0.4140 (+0.0890) | 0.7063 (+0.2057) | 0.5810 (+0.1256) |
452
+ | 0.1282 | 3200 | 0.1898 | - | - | - | - | - |
453
+ | 0.1362 | 3400 | 0.1931 | - | - | - | - | - |
454
+ | 0.1443 | 3600 | 0.1834 | - | - | - | - | - |
455
+ | 0.1523 | 3800 | 0.1813 | - | - | - | - | - |
456
+ | 0.1603 | 4000 | 0.1722 | 0.1594 | 0.6584 (+0.1180) | 0.4167 (+0.0916) | 0.7031 (+0.2025) | 0.5927 (+0.1374) |
457
+ | 0.1683 | 4200 | 0.1759 | - | - | - | - | - |
458
+ | 0.1763 | 4400 | 0.187 | - | - | - | - | - |
459
+ | 0.1843 | 4600 | 0.1682 | - | - | - | - | - |
460
+ | 0.1923 | 4800 | 0.1813 | - | - | - | - | - |
461
+ | 0.2004 | 5000 | 0.1744 | 0.1541 | 0.6275 (+0.0871) | 0.4591 (+0.1341) | 0.7101 (+0.2095) | 0.5989 (+0.1435) |
462
+ | 0.2084 | 5200 | 0.164 | - | - | - | - | - |
463
+ | 0.2164 | 5400 | 0.1758 | - | - | - | - | - |
464
+ | 0.2244 | 5600 | 0.1715 | - | - | - | - | - |
465
+ | 0.2324 | 5800 | 0.1766 | - | - | - | - | - |
466
+ | 0.2404 | 6000 | 0.1633 | 0.1513 | 0.5947 (+0.0543) | 0.4002 (+0.0751) | 0.7161 (+0.2155) | 0.5703 (+0.1150) |
467
+ | 0.2484 | 6200 | 0.1675 | - | - | - | - | - |
468
+ | 0.2565 | 6400 | 0.1615 | - | - | - | - | - |
469
+ | 0.2645 | 6600 | 0.1697 | - | - | - | - | - |
470
+ | 0.2725 | 6800 | 0.1743 | - | - | - | - | - |
471
+ | 0.2805 | 7000 | 0.1781 | 0.1539 | 0.6461 (+0.1056) | 0.4281 (+0.1030) | 0.7288 (+0.2281) | 0.6010 (+0.1456) |
472
+ | 0.2885 | 7200 | 0.1796 | - | - | - | - | - |
473
+ | 0.2965 | 7400 | 0.1681 | - | - | - | - | - |
474
+ | 0.3045 | 7600 | 0.1746 | - | - | - | - | - |
475
+ | 0.3126 | 7800 | 0.1726 | - | - | - | - | - |
476
+ | 0.3206 | 8000 | 0.1625 | 0.1474 | 0.6162 (+0.0757) | 0.4363 (+0.1113) | 0.7352 (+0.2346) | 0.5959 (+0.1405) |
477
+ | 0.3286 | 8200 | 0.1574 | - | - | - | - | - |
478
+ | 0.3366 | 8400 | 0.1672 | - | - | - | - | - |
479
+ | 0.3446 | 8600 | 0.1766 | - | - | - | - | - |
480
+ | 0.3526 | 8800 | 0.1714 | - | - | - | - | - |
481
+ | 0.3606 | 9000 | 0.163 | 0.1497 | 0.6337 (+0.0933) | 0.4559 (+0.1308) | 0.7306 (+0.2300) | 0.6067 (+0.1513) |
482
+ | 0.3686 | 9200 | 0.1626 | - | - | - | - | - |
483
+ | 0.3767 | 9400 | 0.1638 | - | - | - | - | - |
484
+ | 0.3847 | 9600 | 0.1603 | - | - | - | - | - |
485
+ | 0.3927 | 9800 | 0.1689 | - | - | - | - | - |
486
+ | 0.4007 | 10000 | 0.1629 | 0.1500 | 0.6451 (+0.1046) | 0.4330 (+0.1080) | 0.7338 (+0.2332) | 0.6040 (+0.1486) |
487
+ | 0.4087 | 10200 | 0.1644 | - | - | - | - | - |
488
+ | 0.4167 | 10400 | 0.1596 | - | - | - | - | - |
489
+ | 0.4247 | 10600 | 0.1655 | - | - | - | - | - |
490
+ | 0.4328 | 10800 | 0.1596 | - | - | - | - | - |
491
+ | 0.4408 | 11000 | 0.1608 | 0.1416 | 0.6706 (+0.1302) | 0.4425 (+0.1174) | 0.7462 (+0.2455) | 0.6197 (+0.1644) |
492
+ | 0.4488 | 11200 | 0.1676 | - | - | - | - | - |
493
+ | 0.4568 | 11400 | 0.1642 | - | - | - | - | - |
494
+ | 0.4648 | 11600 | 0.1558 | - | - | - | - | - |
495
+ | 0.4728 | 11800 | 0.1582 | - | - | - | - | - |
496
+ | 0.4808 | 12000 | 0.1605 | 0.1471 | 0.6626 (+0.1222) | 0.4141 (+0.0890) | 0.7162 (+0.2156) | 0.5976 (+0.1423) |
497
+ | 0.4889 | 12200 | 0.1692 | - | - | - | - | - |
498
+ | 0.4969 | 12400 | 0.1592 | - | - | - | - | - |
499
+ | 0.5049 | 12600 | 0.1584 | - | - | - | - | - |
500
+ | 0.5129 | 12800 | 0.1613 | - | - | - | - | - |
501
+ | 0.5209 | 13000 | 0.1626 | 0.1436 | 0.6800 (+0.1396) | 0.4200 (+0.0949) | 0.7336 (+0.2329) | 0.6112 (+0.1558) |
502
+ | 0.5289 | 13200 | 0.1551 | - | - | - | - | - |
503
+ | 0.5369 | 13400 | 0.1622 | - | - | - | - | - |
504
+ | 0.5450 | 13600 | 0.1646 | - | - | - | - | - |
505
+ | 0.5530 | 13800 | 0.1642 | - | - | - | - | - |
506
+ | 0.5610 | 14000 | 0.1697 | 0.1396 | 0.6808 (+0.1403) | 0.4255 (+0.1005) | 0.7257 (+0.2250) | 0.6107 (+0.1553) |
507
+ | 0.5690 | 14200 | 0.1565 | - | - | - | - | - |
508
+ | 0.5770 | 14400 | 0.158 | - | - | - | - | - |
509
+ | 0.5850 | 14600 | 0.1497 | - | - | - | - | - |
510
+ | 0.5930 | 14800 | 0.1627 | - | - | - | - | - |
511
+ | 0.6011 | 15000 | 0.1599 | 0.1374 | 0.6647 (+0.1243) | 0.4185 (+0.0935) | 0.7465 (+0.2458) | 0.6099 (+0.1545) |
512
+ | 0.6091 | 15200 | 0.1586 | - | - | - | - | - |
513
+ | 0.6171 | 15400 | 0.1566 | - | - | - | - | - |
514
+ | 0.6251 | 15600 | 0.158 | - | - | - | - | - |
515
+ | 0.6331 | 15800 | 0.1693 | - | - | - | - | - |
516
+ | 0.6411 | 16000 | 0.157 | 0.1377 | 0.6844 (+0.1440) | 0.4022 (+0.0771) | 0.7715 (+0.2708) | 0.6193 (+0.1640) |
517
+ | 0.6491 | 16200 | 0.1508 | - | - | - | - | - |
518
+ | 0.6572 | 16400 | 0.1477 | - | - | - | - | - |
519
+ | 0.6652 | 16600 | 0.1589 | - | - | - | - | - |
520
+ | 0.6732 | 16800 | 0.148 | - | - | - | - | - |
521
+ | 0.6812 | 17000 | 0.153 | 0.1376 | 0.6835 (+0.1431) | 0.4230 (+0.0980) | 0.7471 (+0.2464) | 0.6179 (+0.1625) |
522
+ | 0.6892 | 17200 | 0.1599 | - | - | - | - | - |
523
+ | 0.6972 | 17400 | 0.152 | - | - | - | - | - |
524
+ | 0.7052 | 17600 | 0.1516 | - | - | - | - | - |
525
+ | 0.7133 | 17800 | 0.1537 | - | - | - | - | - |
526
+ | 0.7213 | 18000 | 0.1579 | 0.1386 | 0.6919 (+0.1514) | 0.4111 (+0.0860) | 0.7572 (+0.2565) | 0.6200 (+0.1646) |
527
+ | 0.7293 | 18200 | 0.1548 | - | - | - | - | - |
528
+ | 0.7373 | 18400 | 0.1492 | - | - | - | - | - |
529
+ | 0.7453 | 18600 | 0.1496 | - | - | - | - | - |
530
+ | 0.7533 | 18800 | 0.1514 | - | - | - | - | - |
531
+ | **0.7613** | **19000** | **0.1538** | **0.14** | **0.6981 (+0.1577)** | **0.4036 (+0.0786)** | **0.7584 (+0.2577)** | **0.6200 (+0.1647)** |
532
+ | 0.7694 | 19200 | 0.1504 | - | - | - | - | - |
533
+ | 0.7774 | 19400 | 0.146 | - | - | - | - | - |
534
+ | 0.7854 | 19600 | 0.1467 | - | - | - | - | - |
535
+ | 0.7934 | 19800 | 0.1542 | - | - | - | - | - |
536
+ | 0.8014 | 20000 | 0.1567 | 0.1365 | 0.6786 (+0.1382) | 0.4081 (+0.0831) | 0.7565 (+0.2559) | 0.6144 (+0.1591) |
537
+ | 0.8094 | 20200 | 0.1561 | - | - | - | - | - |
538
+ | 0.8174 | 20400 | 0.1444 | - | - | - | - | - |
539
+ | 0.8255 | 20600 | 0.15 | - | - | - | - | - |
540
+ | 0.8335 | 20800 | 0.1552 | - | - | - | - | - |
541
+ | 0.8415 | 21000 | 0.1548 | 0.1368 | 0.6786 (+0.1381) | 0.4111 (+0.0860) | 0.7544 (+0.2537) | 0.6147 (+0.1593) |
542
+ | 0.8495 | 21200 | 0.1533 | - | - | - | - | - |
543
+ | 0.8575 | 21400 | 0.1538 | - | - | - | - | - |
544
+ | 0.8655 | 21600 | 0.1486 | - | - | - | - | - |
545
+ | 0.8735 | 21800 | 0.1542 | - | - | - | - | - |
546
+ | 0.8816 | 22000 | 0.1536 | 0.1369 | 0.6670 (+0.1266) | 0.4102 (+0.0851) | 0.7504 (+0.2497) | 0.6092 (+0.1538) |
547
+ | 0.8896 | 22200 | 0.1604 | - | - | - | - | - |
548
+ | 0.8976 | 22400 | 0.1498 | - | - | - | - | - |
549
+ | 0.9056 | 22600 | 0.1563 | - | - | - | - | - |
550
+ | 0.9136 | 22800 | 0.154 | - | - | - | - | - |
551
+ | 0.9216 | 23000 | 0.1553 | 0.1363 | 0.6845 (+0.1441) | 0.4134 (+0.0884) | 0.7447 (+0.2441) | 0.6142 (+0.1589) |
552
+ | 0.9296 | 23200 | 0.1488 | - | - | - | - | - |
553
+ | 0.9377 | 23400 | 0.1489 | - | - | - | - | - |
554
+ | 0.9457 | 23600 | 0.1456 | - | - | - | - | - |
555
+ | 0.9537 | 23800 | 0.1561 | - | - | - | - | - |
556
+ | 0.9617 | 24000 | 0.1485 | 0.1374 | 0.6811 (+0.1407) | 0.4111 (+0.0861) | 0.7516 (+0.2510) | 0.6146 (+0.1592) |
557
+ | 0.9697 | 24200 | 0.1462 | - | - | - | - | - |
558
+ | 0.9777 | 24400 | 0.1472 | - | - | - | - | - |
559
+ | 0.9857 | 24600 | 0.1536 | - | - | - | - | - |
560
+ | 0.9937 | 24800 | 0.157 | - | - | - | - | - |
561
+ | -1 | -1 | - | - | 0.6981 (+0.1577) | 0.4036 (+0.0786) | 0.7584 (+0.2577) | 0.6200 (+0.1647) |
562
+
563
+ * The bold row denotes the saved checkpoint.
564
+ </details>
565
+
566
+ ### Environmental Impact
567
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
568
+ - **Energy Consumed**: 2.214 kWh
569
+ - **Carbon Emitted**: 0.861 kg of CO2
570
+ - **Hours Used**: 7.301 hours
571
+
572
+ ### Training Hardware
573
+ - **On Cloud**: No
574
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
575
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
576
+ - **RAM Size**: 31.78 GB
577
+
578
+ ### Framework Versions
579
+ - Python: 3.11.6
580
+ - Sentence Transformers: 3.5.0.dev0
581
+ - Transformers: 4.49.0
582
+ - PyTorch: 2.6.0+cu124
583
+ - Accelerate: 1.4.0
584
+ - Datasets: 3.3.2
585
+ - Tokenizers: 0.21.0
586
+
587
+ ## Citation
588
+
589
+ ### BibTeX
590
+
591
+ #### Sentence Transformers
592
+ ```bibtex
593
+ @inproceedings{reimers-2019-sentence-bert,
594
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
595
+ author = "Reimers, Nils and Gurevych, Iryna",
596
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
597
+ month = "11",
598
+ year = "2019",
599
+ publisher = "Association for Computational Linguistics",
600
+ url = "https://arxiv.org/abs/1908.10084",
601
+ }
602
+ ```
603
+
604
+ #### LambdaLoss
605
+ ```bibtex
606
+ @inproceedings{wang2018lambdaloss,
607
+ title={The lambdaloss framework for ranking metric optimization},
608
+ author={Wang, Xuanhui and Li, Cheng and Golbandi, Nadav and Bendersky, Michael and Najork, Marc},
609
+ booktitle={Proceedings of the 27th ACM international conference on information and knowledge management},
610
+ pages={1313--1322},
611
+ year={2018}
612
+ }
613
+ ```
614
+
615
+ <!--
616
+ ## Glossary
617
+
618
+ *Clearly define terms in order to be accessible across audiences.*
619
+ -->
620
+
621
+ <!--
622
+ ## Model Card Authors
623
+
624
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
625
+ -->
626
+
627
+ <!--
628
+ ## Model Card Contact
629
+
630
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
631
+ -->
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/reranker-msmarco-MiniLM-L12-H384-uncased-lambdaloss_2025-03-13_23-01-31/final",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "sentence_transformers": {
27
+ "activation_fn": "torch.nn.modules.activation.Sigmoid"
28
+ },
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.49.0",
31
+ "type_vocab_size": 2,
32
+ "use_cache": true,
33
+ "vocab_size": 30522
34
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:876b4101aac9249ebe98b8568343e9b0cdf71bae848e5c33035beac4359676c4
3
+ size 133464836
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff