File size: 32,213 Bytes
dedfedb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
---

language:
- en
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:78704
- loss:ListMLELoss
base_model: microsoft/MiniLM-L12-H384-uncased
datasets:
- microsoft/ms_marco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
co2_eq_emissions:
  emissions: 86.38436543185088
  energy_consumed: 0.22223802664213427
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.721
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoMSMARCO R100
      type: NanoMSMARCO_R100
    metrics:
    - type: map
      value: 0.3712
      name: Map
    - type: mrr@10
      value: 0.359
      name: Mrr@10
    - type: ndcg@10
      value: 0.433
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNFCorpus R100
      type: NanoNFCorpus_R100
    metrics:
    - type: map
      value: 0.2849
      name: Map
    - type: mrr@10
      value: 0.4289
      name: Mrr@10
    - type: ndcg@10
      value: 0.2706
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNQ R100
      type: NanoNQ_R100
    metrics:
    - type: map
      value: 0.4117
      name: Map
    - type: mrr@10
      value: 0.4104
      name: Mrr@10
    - type: ndcg@10
      value: 0.466
      name: Ndcg@10
  - task:
      type: cross-encoder-nano-beir
      name: Cross Encoder Nano BEIR
    dataset:
      name: NanoBEIR R100 mean
      type: NanoBEIR_R100_mean
    metrics:
    - type: map
      value: 0.3559
      name: Map
    - type: mrr@10
      value: 0.3994
      name: Mrr@10
    - type: ndcg@10
      value: 0.3898
      name: Ndcg@10
---


# CrossEncoder based on microsoft/MiniLM-L12-H384-uncased

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
    - [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import CrossEncoder



# Download from the 🤗 Hub

model = CrossEncoder("tomaarsen/reranker-msmarco-v1.1-MiniLM-L12-H384-uncased-listmle")

# Get scores for pairs of texts

pairs = [

    ['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'],

    ['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'],

    ['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'],

]

scores = model.predict(pairs)

print(scores.shape)

# (3,)



# Or rank different texts based on similarity to a single text

ranks = model.rank(

    'How many calories in an egg',

    [

        'There are on average between 55 and 80 calories in an egg depending on its size.',

        'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.',

        'Most of the calories in an egg come from the yellow yolk in the center.',

    ]

)

# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json

  {

      "at_k": 10,

      "always_rerank_positives": true

  }

  ```

| Metric      | NanoMSMARCO_R100     | NanoNFCorpus_R100    | NanoNQ_R100          |

|:------------|:---------------------|:---------------------|:---------------------|

| map         | 0.3712 (-0.1184)     | 0.2849 (+0.0239)     | 0.4117 (-0.0079)     |

| mrr@10      | 0.3590 (-0.1185)     | 0.4289 (-0.0709)     | 0.4104 (-0.0163)     |

| **ndcg@10** | **0.4330 (-0.1074)** | **0.2706 (-0.0545)** | **0.4660 (-0.0347)** |



#### Cross Encoder Nano BEIR



* Dataset: `NanoBEIR_R100_mean`

* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:

  ```json

  {

      "dataset_names": [
          "msmarco",

          "nfcorpus",

          "nq"

      ],

      "rerank_k": 100,

      "at_k": 10,

      "always_rerank_positives": true

  }

  ```


| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.3559 (-0.0341)     |
| mrr@10      | 0.3994 (-0.0686)     |
| **ndcg@10** | **0.3898 (-0.0655)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### ms_marco



* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)

* Size: 78,704 training samples

* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                                           | docs                                                                                   | labels                                                                                 |

  |:--------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|

  | type    | string                                                                                          | list                                                                                   | list                                                                                   |

  | details | <ul><li>min: 11 characters</li><li>mean: 33.89 characters</li><li>max: 101 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |

* Samples:

  | query                                           | docs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                            |

  |:------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|

  | <code>elysia meaning origin</code>              | <code>['Meaning of Elysia. Latin-American name. In Latin-American, the name Elysia means-the blessed home.The name Elysia originated as an Latin-American name. The name Elysia is most often used as a girl name or female name. Latin-American Name Meaning-the blessed home. Origin-Latin-America. ', 'The Greek name Elysia means-sweet; blissful. Mythology: Elysium was the dwelling place of happy souls. ', 'Here are pictures of people with the name Elysia. Help us put a face to the name by uploading your pictures to BabyNames.com! ', 'The meaning of Elyssa has more than one different etymologies. It has same or different meanings in other countries and languages. The different meanings of the name Elyssa are: 1  Hebrew meaning: My God is a vow. 2  Greek meaning: My God is a vow. 3  English meaning: My God is a vow.', 'Elysia is a rare given name for women. Elysia is an equally unique last name for all people. (2000 U.S. Census). Displayed below is an analysis of the popularity of the girl name Ely...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>what zone is highgate station</code>      | <code>["For the station known from 1907 to 1939 as Highgate, see Archway tube station. Highgate is a London Underground station and former railway station in Archway Road, in the London Borough of Haringey in north London. The station takes its name from nearby Highgate Village. It is on the High Barnet branch of the Northern line, between Archway and East Finchley stations and is in Travelcard Zone 3. The station was originally opened in 1867 as part of the Great Northern Railway 's line between Finsbury Park and Edgware stations. Highgate station was originally constructed by the Edgware, Highgate and London Railway in the 1860s on its line from Finsbury Park station to Edgware station.", "At the time of the station's construction the first cable car in Europe operated non-stop up Highgate Hill to the village from outside the Archway Tavern, and this name was also considered for the station. It is located underneath the Archway Tower, at the intersection of Holloway Road, Highgate Hill, Ju...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>how much does thyroid surgery cost</code> | <code>['1 The price of thyroidectomy depends on the location where the surgery will be performed. 2  The cost can also differ depending on the experience and skill of the physician that will perform the surgery. 3  This is due to the boost in their reputation for the surgeries that they have performed. 1 On average, this procedure can cost anywhere from $16,000 to as much as $65,000 without any type of health insurance. 2  SurgeryCosts.net offers information to people who want to know more about', '1 For example, a one-month supply of the generic anti-thyroid drug methimazole costs about $30-$120, depending on the dose -- or, about $360-$1,440 a year. 2  And a one-month supply of the brand-name drug Tapazole costs about $90-$150 or more, depending on the dose -- or, about $1,080-$1,800 per year. 1 After the thyroid is destroyed by a radioactive iodine treatment or surgically removed, the patient typically needs to take thyroid hormone replacement such as levothyroxine, which typically costs ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

* Loss: [<code>ListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listmleloss) with these parameters:

  ```json

  {

      "lambda_weight": null,
      "activation_fct": "torch.nn.modules.linear.Identity",

      "mini_batch_size": 16,

      "respect_input_order": true

  }

  ```


### Evaluation Dataset

#### ms_marco



* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)

* Size: 1,000 evaluation samples

* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                                         | docs                                                                                   | labels                                                                                 |

  |:--------|:----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|

  | type    | string                                                                                        | list                                                                                   | list                                                                                   |

  | details | <ul><li>min: 9 characters</li><li>mean: 33.94 characters</li><li>max: 99 characters</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> |

* Samples:

  | query                                              | docs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                            |

  |:---------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|

  | <code>what are some facts penguin enemies</code>   | <code>['Penguins are social birds. Many species feed, swim and nest in groups. During the breeding season, some species form large groups, or “rookeries”, that include thousands of penguins. Each penguin has a distinct call, allowing individuals to find their mate and their chicks even in large groups. ', 'Breeding | Gentoo Penguin Facts. Gentoo penguins are commonly found to breed across sub-Antarctic islands. Some of the notable colonies include Kerguelen islands, Falkland islands, and South Georgia, with fewer numbers also inhabit in the Heard Islands, Macquarie Islands, Antarctic Peninsula, and South Shetland Islands. How about summarizing some of the most interesting and rarely known gentoo penguin facts such as gentoo penguins habitat, diet, breeding, and predators. The gentoo penguins are simply characterized by the broad white stripe extending like a bonnet across the top of its head', 'Predators | Gentoo Penguin Facts. Gentoo penguins are often fall to predators such as leopard seal...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>oral surface definition zoology</code>       | <code>['oral. adj. 1. spoken or verbal: an oral agreement. 2. (Medicine) relating to, affecting, or for use in the mouth: an oral thermometer. 3. (Zoology) of or relating to the surface of an animal, such as a jellyfish, on which the mouth is situated. 4. (Medicine) denoting a drug to be taken by mouth Compare parenteral: an oral contraceptive.', 'In a medusa, the oral surface and tentacles face downward. The body of a medusa is typically bell-shaped or umbrella-shaped, and medusae are free-swimming. In a typical medusa, the margins of the bell extend to form a shelf called the velum, which partially closes the open side of the bell.', "Definition of ORAL ARM. : one of the prolongations of the distal end of the manubrium of a jellyfish. ADVERTISEMENT. This word doesn't usually appear in our free dictionary, but the definition from our premium Unabridged Dictionary is offered here on a limited basis.", 'See also occlusal surface. labial surface the vestibular surface of the incisors and canin...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>what year was the protect act enacted</code> | <code>["The PROTECT Act of 2003 (Pub.L. 108–21, 117 Stat. 650, S. 151, enacted April 30, 2003) is a United States law with the stated intent of preventing child abuse. PROTECT is a backronym which stands for  P rosecutorial R emedies and O ther T ools to end the E xploitation of C hildren T oday. The Department of Justice appealed the Eleventh Circuit's ruling to the U.S. Supreme Court. The Supreme Court reversed the Eleventh Circuit's ruling in May 2008 and upheld this portion of the act.", 'Copyright Renewal Act of 1992, title I of the Copyright Amendments Act of 1992, Pub. L. No. 102-307, 106 Stat. 264 (amending chapter 3, title 17 of the United States Code, by providing for automatic renewal of copyright for works copyrighted between January 1, 1964, and December 31, 1977), enacted June 26, 1992. [Amendments to the Semiconductor Chip Protection Act of 1984], Pub. L. No. 100-159, 101 Stat. 899 (amending chapter 9, title 17, United States Code, regarding protection extended to semiconducto...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

* Loss: [<code>ListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listmleloss) with these parameters:

  ```json

  {

      "lambda_weight": null,
      "activation_fct": "torch.nn.modules.linear.Identity",

      "mini_batch_size": 16,

      "respect_input_order": true

  }

  ```


### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step     | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10  | NanoBEIR_R100_mean_ndcg@10 |

|:----------:|:--------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|

| -1         | -1       | -             | -               | 0.0536 (-0.4868)         | 0.3415 (+0.0165)          | 0.0633 (-0.4373)     | 0.1528 (-0.3026)           |

| 0.0002     | 1        | 15.0387       | -               | -                        | -                         | -                    | -                          |

| 0.0508     | 250      | 13.8424       | -               | -                        | -                         | -                    | -                          |

| 0.1016     | 500      | 12.2432       | 12.1961         | 0.0338 (-0.5066)         | 0.3357 (+0.0107)          | 0.0687 (-0.4319)     | 0.1461 (-0.3093)           |

| 0.1525     | 750      | 12.2166       | -               | -                        | -                         | -                    | -                          |

| 0.2033     | 1000     | 12.1697       | 12.1567         | 0.0286 (-0.5118)         | 0.3049 (-0.0202)          | 0.0311 (-0.4696)     | 0.1215 (-0.3339)           |

| 0.2541     | 1250     | 12.1288       | -               | -                        | -                         | -                    | -                          |

| 0.3049     | 1500     | 12.1364       | 12.1497         | 0.0389 (-0.5015)         | 0.2523 (-0.0727)          | 0.0284 (-0.4722)     | 0.1065 (-0.3488)           |

| 0.3558     | 1750     | 12.1556       | -               | -                        | -                         | -                    | -                          |

| 0.4066     | 2000     | 12.134        | 12.1342         | 0.1969 (-0.3435)         | 0.2295 (-0.0955)          | 0.2666 (-0.2340)     | 0.2310 (-0.2244)           |

| 0.4574     | 2250     | 12.1346       | -               | -                        | -                         | -                    | -                          |

| 0.5082     | 2500     | 12.0789       | 12.1369         | 0.2381 (-0.3023)         | 0.2086 (-0.1164)          | 0.3112 (-0.1895)     | 0.2526 (-0.2027)           |

| 0.5591     | 2750     | 12.1796       | -               | -                        | -                         | -                    | -                          |

| 0.6099     | 3000     | 12.122        | 12.1233         | 0.2978 (-0.2426)         | 0.2211 (-0.1039)          | 0.3967 (-0.1039)     | 0.3052 (-0.1501)           |

| 0.6607     | 3250     | 12.1834       | -               | -                        | -                         | -                    | -                          |

| 0.7115     | 3500     | 12.11         | 12.1241         | 0.3919 (-0.1486)         | 0.2391 (-0.0860)          | 0.4388 (-0.0619)     | 0.3566 (-0.0988)           |

| 0.7624     | 3750     | 12.1394       | -               | -                        | -                         | -                    | -                          |

| **0.8132** | **4000** | **12.0582**   | **12.1232**     | **0.4330 (-0.1074)**     | **0.2706 (-0.0545)**      | **0.4660 (-0.0347)** | **0.3898 (-0.0655)**       |

| 0.8640     | 4250     | 12.152        | -               | -                        | -                         | -                    | -                          |

| 0.9148     | 4500     | 12.0818       | 12.1178         | 0.4173 (-0.1232)         | 0.2749 (-0.0502)          | 0.4767 (-0.0240)     | 0.3896 (-0.0658)           |

| 0.9656     | 4750     | 12.1172       | -               | -                        | -                         | -                    | -                          |

| -1         | -1       | -             | -               | 0.4330 (-0.1074)         | 0.2706 (-0.0545)          | 0.4660 (-0.0347)     | 0.3898 (-0.0655)           |



* The bold row denotes the saved checkpoint.



### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.222 kWh

- **Carbon Emitted**: 0.086 kg of CO2

- **Hours Used**: 0.721 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.5.0.dev0

- Transformers: 4.49.0

- PyTorch: 2.6.0+cu124

- Accelerate: 1.5.1

- Datasets: 3.3.2

- Tokenizers: 0.21.0



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### ListMLELoss

```bibtex

@inproceedings{lan2013position,

    title={Position-aware ListMLE: a sequential learning process for ranking},

    author={Lan, Yanyan and Guo, Jiafeng and Cheng, Xueqi and Liu, Tie-Yan},

    booktitle={Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence},

    pages={333--342},

    year={2013}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->