File size: 32,213 Bytes
dedfedb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
---
language:
- en
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:78704
- loss:ListMLELoss
base_model: microsoft/MiniLM-L12-H384-uncased
datasets:
- microsoft/ms_marco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
co2_eq_emissions:
emissions: 86.38436543185088
energy_consumed: 0.22223802664213427
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.721
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoMSMARCO R100
type: NanoMSMARCO_R100
metrics:
- type: map
value: 0.3712
name: Map
- type: mrr@10
value: 0.359
name: Mrr@10
- type: ndcg@10
value: 0.433
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNFCorpus R100
type: NanoNFCorpus_R100
metrics:
- type: map
value: 0.2849
name: Map
- type: mrr@10
value: 0.4289
name: Mrr@10
- type: ndcg@10
value: 0.2706
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNQ R100
type: NanoNQ_R100
metrics:
- type: map
value: 0.4117
name: Map
- type: mrr@10
value: 0.4104
name: Mrr@10
- type: ndcg@10
value: 0.466
name: Ndcg@10
- task:
type: cross-encoder-nano-beir
name: Cross Encoder Nano BEIR
dataset:
name: NanoBEIR R100 mean
type: NanoBEIR_R100_mean
metrics:
- type: map
value: 0.3559
name: Map
- type: mrr@10
value: 0.3994
name: Mrr@10
- type: ndcg@10
value: 0.3898
name: Ndcg@10
---
# CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
- [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-msmarco-v1.1-MiniLM-L12-H384-uncased-listmle")
# Get scores for pairs of texts
pairs = [
['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'],
['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'],
['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (3,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'How many calories in an egg',
[
'There are on average between 55 and 80 calories in an egg depending on its size.',
'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.',
'Most of the calories in an egg come from the yellow yolk in the center.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
```json
{
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|:------------|:---------------------|:---------------------|:---------------------|
| map | 0.3712 (-0.1184) | 0.2849 (+0.0239) | 0.4117 (-0.0079) |
| mrr@10 | 0.3590 (-0.1185) | 0.4289 (-0.0709) | 0.4104 (-0.0163) |
| **ndcg@10** | **0.4330 (-0.1074)** | **0.2706 (-0.0545)** | **0.4660 (-0.0347)** |
#### Cross Encoder Nano BEIR
* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | Value |
|:------------|:---------------------|
| map | 0.3559 (-0.0341) |
| mrr@10 | 0.3994 (-0.0686) |
| **ndcg@10** | **0.3898 (-0.0655)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### ms_marco
* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
* Size: 78,704 training samples
* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
* Approximate statistics based on the first 1000 samples:
| | query | docs | labels |
|:--------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| type | string | list | list |
| details | <ul><li>min: 11 characters</li><li>mean: 33.89 characters</li><li>max: 101 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |
* Samples:
| query | docs | labels |
|:------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
| <code>elysia meaning origin</code> | <code>['Meaning of Elysia. Latin-American name. In Latin-American, the name Elysia means-the blessed home.The name Elysia originated as an Latin-American name. The name Elysia is most often used as a girl name or female name. Latin-American Name Meaning-the blessed home. Origin-Latin-America. ', 'The Greek name Elysia means-sweet; blissful. Mythology: Elysium was the dwelling place of happy souls. ', 'Here are pictures of people with the name Elysia. Help us put a face to the name by uploading your pictures to BabyNames.com! ', 'The meaning of Elyssa has more than one different etymologies. It has same or different meanings in other countries and languages. The different meanings of the name Elyssa are: 1 Hebrew meaning: My God is a vow. 2 Greek meaning: My God is a vow. 3 English meaning: My God is a vow.', 'Elysia is a rare given name for women. Elysia is an equally unique last name for all people. (2000 U.S. Census). Displayed below is an analysis of the popularity of the girl name Ely...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
| <code>what zone is highgate station</code> | <code>["For the station known from 1907 to 1939 as Highgate, see Archway tube station. Highgate is a London Underground station and former railway station in Archway Road, in the London Borough of Haringey in north London. The station takes its name from nearby Highgate Village. It is on the High Barnet branch of the Northern line, between Archway and East Finchley stations and is in Travelcard Zone 3. The station was originally opened in 1867 as part of the Great Northern Railway 's line between Finsbury Park and Edgware stations. Highgate station was originally constructed by the Edgware, Highgate and London Railway in the 1860s on its line from Finsbury Park station to Edgware station.", "At the time of the station's construction the first cable car in Europe operated non-stop up Highgate Hill to the village from outside the Archway Tavern, and this name was also considered for the station. It is located underneath the Archway Tower, at the intersection of Holloway Road, Highgate Hill, Ju...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
| <code>how much does thyroid surgery cost</code> | <code>['1 The price of thyroidectomy depends on the location where the surgery will be performed. 2 The cost can also differ depending on the experience and skill of the physician that will perform the surgery. 3 This is due to the boost in their reputation for the surgeries that they have performed. 1 On average, this procedure can cost anywhere from $16,000 to as much as $65,000 without any type of health insurance. 2 SurgeryCosts.net offers information to people who want to know more about', '1 For example, a one-month supply of the generic anti-thyroid drug methimazole costs about $30-$120, depending on the dose -- or, about $360-$1,440 a year. 2 And a one-month supply of the brand-name drug Tapazole costs about $90-$150 or more, depending on the dose -- or, about $1,080-$1,800 per year. 1 After the thyroid is destroyed by a radioactive iodine treatment or surgically removed, the patient typically needs to take thyroid hormone replacement such as levothyroxine, which typically costs ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
* Loss: [<code>ListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listmleloss) with these parameters:
```json
{
"lambda_weight": null,
"activation_fct": "torch.nn.modules.linear.Identity",
"mini_batch_size": 16,
"respect_input_order": true
}
```
### Evaluation Dataset
#### ms_marco
* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
* Size: 1,000 evaluation samples
* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
* Approximate statistics based on the first 1000 samples:
| | query | docs | labels |
|:--------|:----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| type | string | list | list |
| details | <ul><li>min: 9 characters</li><li>mean: 33.94 characters</li><li>max: 99 characters</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> |
* Samples:
| query | docs | labels |
|:---------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
| <code>what are some facts penguin enemies</code> | <code>['Penguins are social birds. Many species feed, swim and nest in groups. During the breeding season, some species form large groups, or “rookeries”, that include thousands of penguins. Each penguin has a distinct call, allowing individuals to find their mate and their chicks even in large groups. ', 'Breeding | Gentoo Penguin Facts. Gentoo penguins are commonly found to breed across sub-Antarctic islands. Some of the notable colonies include Kerguelen islands, Falkland islands, and South Georgia, with fewer numbers also inhabit in the Heard Islands, Macquarie Islands, Antarctic Peninsula, and South Shetland Islands. How about summarizing some of the most interesting and rarely known gentoo penguin facts such as gentoo penguins habitat, diet, breeding, and predators. The gentoo penguins are simply characterized by the broad white stripe extending like a bonnet across the top of its head', 'Predators | Gentoo Penguin Facts. Gentoo penguins are often fall to predators such as leopard seal...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
| <code>oral surface definition zoology</code> | <code>['oral. adj. 1. spoken or verbal: an oral agreement. 2. (Medicine) relating to, affecting, or for use in the mouth: an oral thermometer. 3. (Zoology) of or relating to the surface of an animal, such as a jellyfish, on which the mouth is situated. 4. (Medicine) denoting a drug to be taken by mouth Compare parenteral: an oral contraceptive.', 'In a medusa, the oral surface and tentacles face downward. The body of a medusa is typically bell-shaped or umbrella-shaped, and medusae are free-swimming. In a typical medusa, the margins of the bell extend to form a shelf called the velum, which partially closes the open side of the bell.', "Definition of ORAL ARM. : one of the prolongations of the distal end of the manubrium of a jellyfish. ADVERTISEMENT. This word doesn't usually appear in our free dictionary, but the definition from our premium Unabridged Dictionary is offered here on a limited basis.", 'See also occlusal surface. labial surface the vestibular surface of the incisors and canin...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
| <code>what year was the protect act enacted</code> | <code>["The PROTECT Act of 2003 (Pub.L. 108–21, 117 Stat. 650, S. 151, enacted April 30, 2003) is a United States law with the stated intent of preventing child abuse. PROTECT is a backronym which stands for P rosecutorial R emedies and O ther T ools to end the E xploitation of C hildren T oday. The Department of Justice appealed the Eleventh Circuit's ruling to the U.S. Supreme Court. The Supreme Court reversed the Eleventh Circuit's ruling in May 2008 and upheld this portion of the act.", 'Copyright Renewal Act of 1992, title I of the Copyright Amendments Act of 1992, Pub. L. No. 102-307, 106 Stat. 264 (amending chapter 3, title 17 of the United States Code, by providing for automatic renewal of copyright for works copyrighted between January 1, 1964, and December 31, 1977), enacted June 26, 1992. [Amendments to the Semiconductor Chip Protection Act of 1984], Pub. L. No. 100-159, 101 Stat. 899 (amending chapter 9, title 17, United States Code, regarding protection extended to semiconducto...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
* Loss: [<code>ListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listmleloss) with these parameters:
```json
{
"lambda_weight": null,
"activation_fct": "torch.nn.modules.linear.Identity",
"mini_batch_size": 16,
"respect_input_order": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|:----------:|:--------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1 | -1 | - | - | 0.0536 (-0.4868) | 0.3415 (+0.0165) | 0.0633 (-0.4373) | 0.1528 (-0.3026) |
| 0.0002 | 1 | 15.0387 | - | - | - | - | - |
| 0.0508 | 250 | 13.8424 | - | - | - | - | - |
| 0.1016 | 500 | 12.2432 | 12.1961 | 0.0338 (-0.5066) | 0.3357 (+0.0107) | 0.0687 (-0.4319) | 0.1461 (-0.3093) |
| 0.1525 | 750 | 12.2166 | - | - | - | - | - |
| 0.2033 | 1000 | 12.1697 | 12.1567 | 0.0286 (-0.5118) | 0.3049 (-0.0202) | 0.0311 (-0.4696) | 0.1215 (-0.3339) |
| 0.2541 | 1250 | 12.1288 | - | - | - | - | - |
| 0.3049 | 1500 | 12.1364 | 12.1497 | 0.0389 (-0.5015) | 0.2523 (-0.0727) | 0.0284 (-0.4722) | 0.1065 (-0.3488) |
| 0.3558 | 1750 | 12.1556 | - | - | - | - | - |
| 0.4066 | 2000 | 12.134 | 12.1342 | 0.1969 (-0.3435) | 0.2295 (-0.0955) | 0.2666 (-0.2340) | 0.2310 (-0.2244) |
| 0.4574 | 2250 | 12.1346 | - | - | - | - | - |
| 0.5082 | 2500 | 12.0789 | 12.1369 | 0.2381 (-0.3023) | 0.2086 (-0.1164) | 0.3112 (-0.1895) | 0.2526 (-0.2027) |
| 0.5591 | 2750 | 12.1796 | - | - | - | - | - |
| 0.6099 | 3000 | 12.122 | 12.1233 | 0.2978 (-0.2426) | 0.2211 (-0.1039) | 0.3967 (-0.1039) | 0.3052 (-0.1501) |
| 0.6607 | 3250 | 12.1834 | - | - | - | - | - |
| 0.7115 | 3500 | 12.11 | 12.1241 | 0.3919 (-0.1486) | 0.2391 (-0.0860) | 0.4388 (-0.0619) | 0.3566 (-0.0988) |
| 0.7624 | 3750 | 12.1394 | - | - | - | - | - |
| **0.8132** | **4000** | **12.0582** | **12.1232** | **0.4330 (-0.1074)** | **0.2706 (-0.0545)** | **0.4660 (-0.0347)** | **0.3898 (-0.0655)** |
| 0.8640 | 4250 | 12.152 | - | - | - | - | - |
| 0.9148 | 4500 | 12.0818 | 12.1178 | 0.4173 (-0.1232) | 0.2749 (-0.0502) | 0.4767 (-0.0240) | 0.3896 (-0.0658) |
| 0.9656 | 4750 | 12.1172 | - | - | - | - | - |
| -1 | -1 | - | - | 0.4330 (-0.1074) | 0.2706 (-0.0545) | 0.4660 (-0.0347) | 0.3898 (-0.0655) |
* The bold row denotes the saved checkpoint.
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.222 kWh
- **Carbon Emitted**: 0.086 kg of CO2
- **Hours Used**: 0.721 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### ListMLELoss
```bibtex
@inproceedings{lan2013position,
title={Position-aware ListMLE: a sequential learning process for ranking},
author={Lan, Yanyan and Guo, Jiafeng and Cheng, Xueqi and Liu, Tie-Yan},
booktitle={Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence},
pages={333--342},
year={2013}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |