File size: 81,630 Bytes
7070c21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c4db27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:99000
- loss:CSRLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: what is the difference between uae and saudi arabia
  sentences:
  - 'Monopoly Junior Players take turns in order, with the initial player determined
    by age before the game: the youngest player goes first. Players are dealt an initial
    amount Monopoly money depending on the total number of players playing: 20 in
    a two-player game, 18 in a three-player game or 16 in a four-player game. A typical
    turn begins with the rolling of the die and the player advancing their token clockwise
    around the board the corresponding number of spaces. When the player lands on
    an unowned space they must purchase the space from the bank for the amount indicated
    on the board, and places a sold sign on the coloured band at the top of the space
    to denote ownership. If a player lands on a space owned by an opponent the player
    pays the opponent rent in the amount written on the board. If the opponent owns
    both properties of the same colour the rent is doubled.'
  - Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia
    continue to take somewhat differing stances on regional conflicts such the Yemeni
    Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement,
    which has fought against Saudi-backed forces, and the Syrian Civil War, where
    the UAE has disagreed with Saudi support for Islamist movements.[4]
  - Governors of states of India The governors and lieutenant-governors are appointed
    by the President for a term of five years.
- source_sentence: who came up with the seperation of powers
  sentences:
  - Separation of powers Aristotle first mentioned the idea of a "mixed government"
    or hybrid government in his work Politics where he drew upon many of the constitutional
    forms in the city-states of Ancient Greece. In the Roman Republic, the Roman Senate,
    Consuls and the Assemblies showed an example of a mixed government according to
    Polybius (Histories, Book 6, 11–13).
  - Economy of New Zealand New Zealand's diverse market economy has a sizable service
    sector, accounting for 63% of all GDP activity in 2013.[17] Large scale manufacturing
    industries include aluminium production, food processing, metal fabrication, wood
    and paper products. Mining, manufacturing, electricity, gas, water, and waste
    services accounted for 16.5% of GDP in 2013.[17] The primary sector continues
    to dominate New Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
  - John Dalton John Dalton FRS (/ˈdɔːltən/; 6 September 1766  27 July 1844) was
    an English chemist, physicist, and meteorologist. He is best known for proposing
    the modern atomic theory and for his research into colour blindness, sometimes
    referred to as Daltonism in his honour.
- source_sentence: who was the first president of indian science congress meeting
    held in kolkata in 1914
  sentences:
  - Nobody to Blame "Nobody to Blame" is a song recorded by American country music
    artist Chris Stapleton. The song was released in November 2015 as the singer's
    third single overall. Stapleton co-wrote the song with Barry Bales and Ronnie
    Bowman. It became Stapleton's first top 10 single on the US Country Airplay chart.[2]
    "Nobody to Blame" won Song of the Year at the ACM Awards.[3]
  - Indian Science Congress Association The first meeting of the congress was held
    from 15–17 January 1914 at the premises of the Asiatic Society, Calcutta. Honorable
    justice Sir Ashutosh Mukherjee, the then Vice Chancellor of the University of
    Calcutta presided over the Congress. One hundred and five scientists from different
    parts of India and abroad attended it. Altogether 35 papers under 6 different
    sections, namely Botany, Chemistry, Ethnography, Geology, Physics and Zoology
    were presented.
  - New Soul "New Soul" is a song by the French-Israeli R&B/soul singer Yael Naïm,
    from her self-titled second album. The song gained popularity in the United States
    following its use by Apple in an advertisement for their MacBook Air laptop. In
    the song Naïm sings of being a new soul who has come into the world to learn "a
    bit 'bout how to give and take." However, she finds that things are harder than
    they seem. The song, also featured in the films The House Bunny and Wild Target,
    features a prominent "la la la la" section as its hook. It remains Naïm's biggest
    hit single in the U.S. to date, and her only one to reach the Top 40 of the Billboard
    Hot 100.
- source_sentence: who wrote get over it by the eagles
  sentences:
  - Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as a
    single after a fourteen-year breakup. It was also the first song written by bandmates
    Don Henley and Glenn Frey when the band reunited. "Get Over It" was played live
    for the first time during their Hell Freezes Over tour in 1994. It returned the
    band to the U.S. Top 40 after a fourteen-year absence, peaking at No. 31 on the
    Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream Rock Tracks
    chart. The song was not played live by the Eagles after the "Hell Freezes Over"
    tour in 1994. It remains the group's last Top 40 hit in the U.S.
  - Pokhran-II In 1980, the general elections marked the return of Indira Gandhi and
    the nuclear program began to gain momentum under Ramanna in 1981. Requests for
    additional nuclear tests were continued to be denied by the government when Prime
    Minister Indira Gandhi saw Pakistan began exercising the brinkmanship, though
    the nuclear program continued to advance.[7] Initiation towards hydrogen bomb
    began as well as the launch of the missile programme began under Late president
    Dr. Abdul Kalam, who was then an aerospace engineer.[7]
  - R. Budd Dwyer Robert Budd Dwyer (November 21, 1939  January 22, 1987) was the
    30th State Treasurer of the Commonwealth of Pennsylvania. He served from 1971
    to 1981 as a Republican member of the Pennsylvania State Senate representing the
    state's 50th district. He then served as the 30th Treasurer of Pennsylvania from
    January 20, 1981, until his death. On January 22, 1987, Dwyer called a news conference
    in the Pennsylvania state capital of Harrisburg where he killed himself in front
    of the gathered reporters, by shooting himself in the mouth with a .357 Magnum
    revolver.[4] Dwyer's suicide was broadcast later that day to a wide television
    audience across Pennsylvania.
- source_sentence: who is cornelius in the book of acts
  sentences:
  - Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It
    was included on Clapton's 1977 album Slowhand. Clapton wrote the song about Pattie
    Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit
    (then Marcy Levy) and Yvonne Elliman.
  - Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their
    head of story.[1] There he worked on all of their films produced up to 2006; this
    included Toy Story (for which he received an Academy Award nomination) and A Bug's
    Life, as the co-story writer and others as story supervisor. His final film was
    Cars. He also voiced characters in many of the films, including Heimlich the caterpillar
    in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in
    Finding Nemo.[1]
  - 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who
    is considered by Christians to be one of the first Gentiles to convert to the
    faith, as related in Acts of the Apostles.'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
  emissions: 113.44094173179047
  energy_consumed: 0.29184553136281904
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.773
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SparseEncoder based on microsoft/mpnet-base
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO 16
      type: NanoMSMARCO_16
    metrics:
    - type: cosine_accuracy@1
      value: 0.1
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.26
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.36
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07200000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05000000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.26
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.36
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.272077335852507
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.20234920634920633
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.21758364304569
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus 16
      type: NanoNFCorpus_16
    metrics:
    - type: cosine_accuracy@1
      value: 0.08
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.14
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.24
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.32
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.08
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.05999999999999999
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.08
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.005993249911183041
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.009403252754209558
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.013285393478414642
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.01646720008819819
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.06095056479011788
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.14072222222222222
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.015310893897400863
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ 16
      type: NanoNQ_16
    metrics:
    - type: cosine_accuracy@1
      value: 0.18
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.42
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.54
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.64
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.18
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.13999999999999999
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10800000000000003
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.064
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.18
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3867151912670764
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3266904761904762
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3250246379519026
      name: Cosine Map@100
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean 16
      type: NanoBEIR_mean_16
    metrics:
    - type: cosine_accuracy@1
      value: 0.12
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2733333333333334
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.38000000000000006
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.48666666666666664
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.12
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09555555555555555
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.08666666666666668
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05466666666666667
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.09533108330372768
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2231344175847365
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.29109513115947155
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.3721557333627327
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2399143639699004
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.22325396825396826
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.18597305829833113
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO 32
      type: NanoMSMARCO_32
    metrics:
    - type: cosine_accuracy@1
      value: 0.18
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.26
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.36
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.56
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.18
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07200000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05600000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.18
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.26
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.36
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.56
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.33109644128066057
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2634444444444444
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.27935469743863556
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus 32
      type: NanoNFCorpus_32
    metrics:
    - type: cosine_accuracy@1
      value: 0.14
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.26
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.28
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.34
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.14
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.11333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.09600000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.007695869325666863
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.012313937822266688
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.01702903494334016
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.024165659145052122
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.10225707780728845
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2055238095238095
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.022577551502700435
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ 32
      type: NanoNQ_32
    metrics:
    - type: cosine_accuracy@1
      value: 0.32
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.46
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.58
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.68
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.32
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15333333333333332
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11600000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.068
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.31
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.42
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.53
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.63
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4603957123337682
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4211904761904762
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.41127594932176303
      name: Cosine Map@100
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean 32
      type: NanoBEIR_mean_32
    metrics:
    - type: cosine_accuracy@1
      value: 0.21333333333333335
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.32666666666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.4066666666666667
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5266666666666667
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.21333333333333335
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.11777777777777776
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.09466666666666668
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07133333333333335
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.16589862310855563
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.23077131260742223
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.30234301164778005
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4047218863816841
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.29791641047390577
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2967195767195767
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.23773606608769968
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO 64
      type: NanoMSMARCO_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.16
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.38
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.46
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.16
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.12666666666666665
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.09200000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.16
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.38
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.46
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3545165496884908
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.27796031746031746
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.29572845389453484
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus 64
      type: NanoNFCorpus_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.18
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.26
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.32
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.18
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.12666666666666665
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.088
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.009483451025013268
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.012904129822135095
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.036867855927155205
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.04756198673273659
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.11496239522394665
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.24210317460317454
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.0318282871881163
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ 64
      type: NanoNQ_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.44
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.62
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.72
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.44
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07400000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.42
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.58
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.64
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.68
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.561884513825323
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5395555555555555
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5268055680783221
      name: Cosine Map@100
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean 64
      type: NanoBEIR_mean_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.26
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.42
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.48666666666666664
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5733333333333334
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.26
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15333333333333332
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11733333333333335
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.074
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.19649448367500444
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.32430137660737834
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3789559519757184
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4425206622442455
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3437878195792535
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.35320634920634914
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2847874363869911
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO 128
      type: NanoMSMARCO_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.2
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.34
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.46
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.68
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.11333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.09200000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.068
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.34
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.46
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.68
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4022072447482653
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.31815873015873014
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.33230553462724927
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus 128
      type: NanoNFCorpus_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.14
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.34
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.38
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.52
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.14
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16666666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.128
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.11399999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.0036955722371344803
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.021194355136532755
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.024553995602026958
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.043293677887263404
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.12666378888376595
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2537936507936508
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.03330968914510828
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ 128
      type: NanoNQ_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.38
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.56
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.38
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18666666666666665
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14400000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08199999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.35
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.53
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.66
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.76
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5527057053472701
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5072460317460317
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4846991157483792
      name: Cosine Map@100
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean 128
      type: NanoBEIR_mean_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.24
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4133333333333334
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5133333333333333
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6666666666666666
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.24
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15555555555555553
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12133333333333335
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08800000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1845651907457115
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2970647850455109
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.381517998534009
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4944312259624211
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3605255796597671
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.35973280423280424
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2834381131735789
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO 256
      type: NanoMSMARCO_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.26
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.48
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.52
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.68
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.26
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15999999999999998
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10400000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.068
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.26
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.48
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.52
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.68
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4651758219790261
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.39804761904761904
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.412474140043243
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus 256
      type: NanoNFCorpus_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.18
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.28
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.38
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.18
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.14666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.114
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.005516710448516594
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.011401609103753301
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.021271103372355084
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.0347182833647384
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.12628863554710404
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2575
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.033728487141126466
      name: Cosine Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ 256
      type: NanoNQ_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.42
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.58
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.76
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.42
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.19333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.54
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.64
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.73
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5611650669716552
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5226904761904763
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5086922580864135
      name: Cosine Map@100
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean 256
      type: NanoBEIR_mean_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.2866666666666667
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4466666666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5266666666666667
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6466666666666667
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2866666666666667
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.128
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08733333333333333
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.22183890348283888
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.3438005363679178
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3937570344574517
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.48157276112157943
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3842098414992618
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3927460317460318
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.31829829509026103
      name: Cosine Map@100
---

# SparseEncoder based on microsoft/mpnet-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

See [train_nq.py](train_nq.py) for the training script used for this model.

> [!WARNING]
> Warning:
> Sparse models in Sentence Transformers are still quite experimental.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 768, 'hidden_dim': 3072, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/sparse-mpnet-base-nq-fresh")
# Run inference
sentences = [
    'who is cornelius in the book of acts',
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO_16`, `NanoNFCorpus_16` and `NanoNQ_16`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 16
  }
  ```

| Metric              | NanoMSMARCO_16 | NanoNFCorpus_16 | NanoNQ_16  |
|:--------------------|:---------------|:----------------|:-----------|
| cosine_accuracy@1   | 0.1            | 0.08            | 0.18       |
| cosine_accuracy@3   | 0.26           | 0.14            | 0.42       |
| cosine_accuracy@5   | 0.36           | 0.24            | 0.54       |
| cosine_accuracy@10  | 0.5            | 0.32            | 0.64       |
| cosine_precision@1  | 0.1            | 0.08            | 0.18       |
| cosine_precision@3  | 0.0867         | 0.06            | 0.14       |
| cosine_precision@5  | 0.072          | 0.08            | 0.108      |
| cosine_precision@10 | 0.05           | 0.05            | 0.064      |
| cosine_recall@1     | 0.1            | 0.006           | 0.18       |
| cosine_recall@3     | 0.26           | 0.0094          | 0.4        |
| cosine_recall@5     | 0.36           | 0.0133          | 0.5        |
| cosine_recall@10    | 0.5            | 0.0165          | 0.6        |
| **cosine_ndcg@10**  | **0.2721**     | **0.061**       | **0.3867** |
| cosine_mrr@10       | 0.2023         | 0.1407          | 0.3267     |
| cosine_map@100      | 0.2176         | 0.0153          | 0.325      |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean_16`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ],
      "truncate_dim": 16
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.12       |
| cosine_accuracy@3   | 0.2733     |
| cosine_accuracy@5   | 0.38       |
| cosine_accuracy@10  | 0.4867     |
| cosine_precision@1  | 0.12       |
| cosine_precision@3  | 0.0956     |
| cosine_precision@5  | 0.0867     |
| cosine_precision@10 | 0.0547     |
| cosine_recall@1     | 0.0953     |
| cosine_recall@3     | 0.2231     |
| cosine_recall@5     | 0.2911     |
| cosine_recall@10    | 0.3722     |
| **cosine_ndcg@10**  | **0.2399** |
| cosine_mrr@10       | 0.2233     |
| cosine_map@100      | 0.186      |

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO_32`, `NanoNFCorpus_32` and `NanoNQ_32`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 32
  }
  ```

| Metric              | NanoMSMARCO_32 | NanoNFCorpus_32 | NanoNQ_32  |
|:--------------------|:---------------|:----------------|:-----------|
| cosine_accuracy@1   | 0.18           | 0.14            | 0.32       |
| cosine_accuracy@3   | 0.26           | 0.26            | 0.46       |
| cosine_accuracy@5   | 0.36           | 0.28            | 0.58       |
| cosine_accuracy@10  | 0.56           | 0.34            | 0.68       |
| cosine_precision@1  | 0.18           | 0.14            | 0.32       |
| cosine_precision@3  | 0.0867         | 0.1133          | 0.1533     |
| cosine_precision@5  | 0.072          | 0.096           | 0.116      |
| cosine_precision@10 | 0.056          | 0.09            | 0.068      |
| cosine_recall@1     | 0.18           | 0.0077          | 0.31       |
| cosine_recall@3     | 0.26           | 0.0123          | 0.42       |
| cosine_recall@5     | 0.36           | 0.017           | 0.53       |
| cosine_recall@10    | 0.56           | 0.0242          | 0.63       |
| **cosine_ndcg@10**  | **0.3311**     | **0.1023**      | **0.4604** |
| cosine_mrr@10       | 0.2634         | 0.2055          | 0.4212     |
| cosine_map@100      | 0.2794         | 0.0226          | 0.4113     |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean_32`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ],
      "truncate_dim": 32
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2133     |
| cosine_accuracy@3   | 0.3267     |
| cosine_accuracy@5   | 0.4067     |
| cosine_accuracy@10  | 0.5267     |
| cosine_precision@1  | 0.2133     |
| cosine_precision@3  | 0.1178     |
| cosine_precision@5  | 0.0947     |
| cosine_precision@10 | 0.0713     |
| cosine_recall@1     | 0.1659     |
| cosine_recall@3     | 0.2308     |
| cosine_recall@5     | 0.3023     |
| cosine_recall@10    | 0.4047     |
| **cosine_ndcg@10**  | **0.2979** |
| cosine_mrr@10       | 0.2967     |
| cosine_map@100      | 0.2377     |

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO_64`, `NanoNFCorpus_64` and `NanoNQ_64`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 64
  }
  ```

| Metric              | NanoMSMARCO_64 | NanoNFCorpus_64 | NanoNQ_64  |
|:--------------------|:---------------|:----------------|:-----------|
| cosine_accuracy@1   | 0.16           | 0.18            | 0.44       |
| cosine_accuracy@3   | 0.38           | 0.26            | 0.62       |
| cosine_accuracy@5   | 0.46           | 0.32            | 0.68       |
| cosine_accuracy@10  | 0.6            | 0.4             | 0.72       |
| cosine_precision@1  | 0.16           | 0.18            | 0.44       |
| cosine_precision@3  | 0.1267         | 0.1267          | 0.2067     |
| cosine_precision@5  | 0.092          | 0.12            | 0.14       |
| cosine_precision@10 | 0.06           | 0.088           | 0.074      |
| cosine_recall@1     | 0.16           | 0.0095          | 0.42       |
| cosine_recall@3     | 0.38           | 0.0129          | 0.58       |
| cosine_recall@5     | 0.46           | 0.0369          | 0.64       |
| cosine_recall@10    | 0.6            | 0.0476          | 0.68       |
| **cosine_ndcg@10**  | **0.3545**     | **0.115**       | **0.5619** |
| cosine_mrr@10       | 0.278          | 0.2421          | 0.5396     |
| cosine_map@100      | 0.2957         | 0.0318          | 0.5268     |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean_64`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ],
      "truncate_dim": 64
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.26       |
| cosine_accuracy@3   | 0.42       |
| cosine_accuracy@5   | 0.4867     |
| cosine_accuracy@10  | 0.5733     |
| cosine_precision@1  | 0.26       |
| cosine_precision@3  | 0.1533     |
| cosine_precision@5  | 0.1173     |
| cosine_precision@10 | 0.074      |
| cosine_recall@1     | 0.1965     |
| cosine_recall@3     | 0.3243     |
| cosine_recall@5     | 0.379      |
| cosine_recall@10    | 0.4425     |
| **cosine_ndcg@10**  | **0.3438** |
| cosine_mrr@10       | 0.3532     |
| cosine_map@100      | 0.2848     |

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO_128`, `NanoNFCorpus_128` and `NanoNQ_128`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 128
  }
  ```

| Metric              | NanoMSMARCO_128 | NanoNFCorpus_128 | NanoNQ_128 |
|:--------------------|:----------------|:-----------------|:-----------|
| cosine_accuracy@1   | 0.2             | 0.14             | 0.38       |
| cosine_accuracy@3   | 0.34            | 0.34             | 0.56       |
| cosine_accuracy@5   | 0.46            | 0.38             | 0.7        |
| cosine_accuracy@10  | 0.68            | 0.52             | 0.8        |
| cosine_precision@1  | 0.2             | 0.14             | 0.38       |
| cosine_precision@3  | 0.1133          | 0.1667           | 0.1867     |
| cosine_precision@5  | 0.092           | 0.128            | 0.144      |
| cosine_precision@10 | 0.068           | 0.114            | 0.082      |
| cosine_recall@1     | 0.2             | 0.0037           | 0.35       |
| cosine_recall@3     | 0.34            | 0.0212           | 0.53       |
| cosine_recall@5     | 0.46            | 0.0246           | 0.66       |
| cosine_recall@10    | 0.68            | 0.0433           | 0.76       |
| **cosine_ndcg@10**  | **0.4022**      | **0.1267**       | **0.5527** |
| cosine_mrr@10       | 0.3182          | 0.2538           | 0.5072     |
| cosine_map@100      | 0.3323          | 0.0333           | 0.4847     |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean_128`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ],
      "truncate_dim": 128
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.24       |
| cosine_accuracy@3   | 0.4133     |
| cosine_accuracy@5   | 0.5133     |
| cosine_accuracy@10  | 0.6667     |
| cosine_precision@1  | 0.24       |
| cosine_precision@3  | 0.1556     |
| cosine_precision@5  | 0.1213     |
| cosine_precision@10 | 0.088      |
| cosine_recall@1     | 0.1846     |
| cosine_recall@3     | 0.2971     |
| cosine_recall@5     | 0.3815     |
| cosine_recall@10    | 0.4944     |
| **cosine_ndcg@10**  | **0.3605** |
| cosine_mrr@10       | 0.3597     |
| cosine_map@100      | 0.2834     |

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO_256`, `NanoNFCorpus_256` and `NanoNQ_256`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 256
  }
  ```

| Metric              | NanoMSMARCO_256 | NanoNFCorpus_256 | NanoNQ_256 |
|:--------------------|:----------------|:-----------------|:-----------|
| cosine_accuracy@1   | 0.26            | 0.18             | 0.42       |
| cosine_accuracy@3   | 0.48            | 0.28             | 0.58       |
| cosine_accuracy@5   | 0.52            | 0.38             | 0.68       |
| cosine_accuracy@10  | 0.68            | 0.5              | 0.76       |
| cosine_precision@1  | 0.26            | 0.18             | 0.42       |
| cosine_precision@3  | 0.16            | 0.1467           | 0.1933     |
| cosine_precision@5  | 0.104           | 0.14             | 0.14       |
| cosine_precision@10 | 0.068           | 0.114            | 0.08       |
| cosine_recall@1     | 0.26            | 0.0055           | 0.4        |
| cosine_recall@3     | 0.48            | 0.0114           | 0.54       |
| cosine_recall@5     | 0.52            | 0.0213           | 0.64       |
| cosine_recall@10    | 0.68            | 0.0347           | 0.73       |
| **cosine_ndcg@10**  | **0.4652**      | **0.1263**       | **0.5612** |
| cosine_mrr@10       | 0.398           | 0.2575           | 0.5227     |
| cosine_map@100      | 0.4125          | 0.0337           | 0.5087     |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean_256`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ],
      "truncate_dim": 256
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2867     |
| cosine_accuracy@3   | 0.4467     |
| cosine_accuracy@5   | 0.5267     |
| cosine_accuracy@10  | 0.6467     |
| cosine_precision@1  | 0.2867     |
| cosine_precision@3  | 0.1667     |
| cosine_precision@5  | 0.128      |
| cosine_precision@10 | 0.0873     |
| cosine_recall@1     | 0.2218     |
| cosine_recall@3     | 0.3438     |
| cosine_recall@5     | 0.3938     |
| cosine_recall@10    | 0.4816     |
| **cosine_ndcg@10**  | **0.3842** |
| cosine_mrr@10       | 0.3927     |
| cosine_map@100      | 0.3183     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | answer                                                                              |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> |
* Samples:
  | query                                                         | answer                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>who played the father in papa don't preach</code>       | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code>                                                                                                                                                                                                                                                                                                                                                     |
  | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
  | <code>how many puppies can a dog give birth to</code>         | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code>                                                                                                                                                                                                                                                      |
* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#csrloss) with these parameters:
  ```json
  {
      "beta": 0.1,
      "gamma": 1,
      "scale": 20.0
  }
  ```

### Evaluation Dataset

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | answer                                                                               |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | query                                                  | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
  | <code>what kind of car does jay gatsby drive</code>    | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code>                                       |
  | <code>who sings if i can dream about you</code>        | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code>                                                                                                                                                                                                                   |
* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#csrloss) with these parameters:
  ```json
  {
      "beta": 0.1,
      "gamma": 1,
      "scale": 20.0
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 4e-05
- `weight_decay`: 0.0001
- `adam_epsilon`: 6.25e-10
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 4e-05
- `weight_decay`: 0.0001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 6.25e-10
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | NanoMSMARCO_16_cosine_ndcg@10 | NanoNFCorpus_16_cosine_ndcg@10 | NanoNQ_16_cosine_ndcg@10 | NanoBEIR_mean_16_cosine_ndcg@10 | NanoMSMARCO_32_cosine_ndcg@10 | NanoNFCorpus_32_cosine_ndcg@10 | NanoNQ_32_cosine_ndcg@10 | NanoBEIR_mean_32_cosine_ndcg@10 | NanoMSMARCO_64_cosine_ndcg@10 | NanoNFCorpus_64_cosine_ndcg@10 | NanoNQ_64_cosine_ndcg@10 | NanoBEIR_mean_64_cosine_ndcg@10 | NanoMSMARCO_128_cosine_ndcg@10 | NanoNFCorpus_128_cosine_ndcg@10 | NanoNQ_128_cosine_ndcg@10 | NanoBEIR_mean_128_cosine_ndcg@10 | NanoMSMARCO_256_cosine_ndcg@10 | NanoNFCorpus_256_cosine_ndcg@10 | NanoNQ_256_cosine_ndcg@10 | NanoBEIR_mean_256_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:-----------------------------:|:------------------------------:|:------------------------:|:-------------------------------:|:-----------------------------:|:------------------------------:|:------------------------:|:-------------------------------:|:-----------------------------:|:------------------------------:|:------------------------:|:-------------------------------:|:------------------------------:|:-------------------------------:|:-------------------------:|:--------------------------------:|:------------------------------:|:-------------------------------:|:-------------------------:|:--------------------------------:|
| -1     | -1   | -             | -               | 0.0318                        | 0.0148                         | 0.0149                   | 0.0205                          | 0.0794                        | 0.0234                         | 0.0102                   | 0.0377                          | 0.0855                        | 0.0195                         | 0.0508                   | 0.0519                          | 0.1081                         | 0.0246                          | 0.0264                    | 0.0530                           | 0.1006                         | 0.0249                          | 0.0388                    | 0.0547                           |
| 0.0646 | 200  | 0.7332        | -               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                              | -                               | -                         | -                                | -                              | -                               | -                         | -                                |
| 0.1293 | 400  | 0.2606        | 0.1970          | 0.2845                        | 0.0970                         | 0.3546                   | 0.2454                          | 0.3778                        | 0.1358                         | 0.3455                   | 0.2864                          | 0.3868                        | 0.1563                         | 0.3806                   | 0.3079                          | 0.3988                         | 0.1664                          | 0.4035                    | 0.3229                           | 0.4020                         | 0.1782                          | 0.4181                    | 0.3327                           |
| 0.1939 | 600  | 0.2247        | -               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                              | -                               | -                         | -                                | -                              | -                               | -                         | -                                |
| 0.2586 | 800  | 0.1983        | 0.1750          | 0.2908                        | 0.0866                         | 0.3730                   | 0.2502                          | 0.3324                        | 0.1155                         | 0.4275                   | 0.2918                          | 0.3511                        | 0.1621                         | 0.4998                   | 0.3377                          | 0.3920                         | 0.1563                          | 0.5174                    | 0.3553                           | 0.4152                         | 0.1555                          | 0.5153                    | 0.3620                           |
| 0.3232 | 1000 | 0.1822        | -               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                              | -                               | -                         | -                                | -                              | -                               | -                         | -                                |
| 0.3878 | 1200 | 0.1846        | 0.1594          | 0.2775                        | 0.0785                         | 0.3723                   | 0.2428                          | 0.2642                        | 0.1076                         | 0.4389                   | 0.2702                          | 0.3865                        | 0.1328                         | 0.4329                   | 0.3174                          | 0.3883                         | 0.1446                          | 0.5040                    | 0.3456                           | 0.3638                         | 0.1529                          | 0.4939                    | 0.3369                           |
| 0.4525 | 1400 | 0.1669        | -               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                              | -                               | -                         | -                                | -                              | -                               | -                         | -                                |
| 0.5171 | 1600 | 0.1573        | 0.1452          | 0.2740                        | 0.0624                         | 0.3670                   | 0.2345                          | 0.3557                        | 0.0855                         | 0.4188                   | 0.2867                          | 0.4094                        | 0.1099                         | 0.5027                   | 0.3407                          | 0.3885                         | 0.1340                          | 0.4990                    | 0.3405                           | 0.4820                         | 0.1577                          | 0.5453                    | 0.3950                           |
| 0.5818 | 1800 | 0.1502        | -               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                              | -                               | -                         | -                                | -                              | -                               | -                         | -                                |
| 0.6464 | 2000 | 0.1375        | 0.1255          | 0.2307                        | 0.0685                         | 0.3801                   | 0.2264                          | 0.2529                        | 0.0815                         | 0.4335                   | 0.2560                          | 0.3509                        | 0.0955                         | 0.4611                   | 0.3025                          | 0.3932                         | 0.1339                          | 0.4875                    | 0.3382                           | 0.4184                         | 0.1483                          | 0.4904                    | 0.3523                           |
| 0.7111 | 2200 | 0.1359        | -               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                              | -                               | -                         | -                                | -                              | -                               | -                         | -                                |
| 0.7757 | 2400 | 0.1288        | 0.1184          | 0.2737                        | 0.0703                         | 0.3419                   | 0.2286                          | 0.3765                        | 0.0843                         | 0.4440                   | 0.3016                          | 0.3927                        | 0.1247                         | 0.5285                   | 0.3486                          | 0.3726                         | 0.1203                          | 0.5153                    | 0.3361                           | 0.4676                         | 0.1343                          | 0.5523                    | 0.3847                           |
| 0.8403 | 2600 | 0.1235        | -               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                              | -                               | -                         | -                                | -                              | -                               | -                         | -                                |
| 0.9050 | 2800 | 0.1168        | 0.1094          | 0.2751                        | 0.0710                         | 0.3602                   | 0.2354                          | 0.3227                        | 0.0966                         | 0.5046                   | 0.3080                          | 0.4112                        | 0.1129                         | 0.5268                   | 0.3503                          | 0.4077                         | 0.1259                          | 0.5253                    | 0.3530                           | 0.4642                         | 0.1238                          | 0.5726                    | 0.3869                           |
| 0.9696 | 3000 | 0.1187        | -               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                             | -                              | -                        | -                               | -                              | -                               | -                         | -                                | -                              | -                               | -                         | -                                |
| -1     | -1   | -             | -               | 0.2721                        | 0.0610                         | 0.3867                   | 0.2399                          | 0.3311                        | 0.1023                         | 0.4604                   | 0.2979                          | 0.3545                        | 0.1150                         | 0.5619                   | 0.3438                          | 0.4022                         | 0.1267                          | 0.5527                    | 0.3605                           | 0.4652                         | 0.1263                          | 0.5612                    | 0.3842                           |


### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.292 kWh
- **Carbon Emitted**: 0.113 kg of CO2
- **Hours Used**: 0.773 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.1.0.dev0
- Transformers: 4.52.0.dev0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 3.3.2
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->