Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +244 -0
- config.json +58 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +12 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- sentence-transformers
|
5 |
+
- text-classification
|
6 |
+
- generated_from_setfit_trainer
|
7 |
+
widget:
|
8 |
+
- text: Is a residential portion of a building that sells alcohol considered "licensed
|
9 |
+
premises" in indiana
|
10 |
+
- text: In Michigan, what criteria do courts consider in granting grandparent visitation
|
11 |
+
rights?
|
12 |
+
- text: Ohio aggravated arson cases
|
13 |
+
- text: In Texas, what protections exist for whistleblowers?
|
14 |
+
- text: What did you have for breakfast?
|
15 |
+
metrics:
|
16 |
+
- accuracy
|
17 |
+
pipeline_tag: text-classification
|
18 |
+
library_name: setfit
|
19 |
+
inference: true
|
20 |
+
base_model: nomic-ai/nomic-embed-text-v1.5
|
21 |
+
---
|
22 |
+
|
23 |
+
# SetFit with nomic-ai/nomic-embed-text-v1.5
|
24 |
+
|
25 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
26 |
+
|
27 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
28 |
+
|
29 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
30 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
31 |
+
|
32 |
+
## Model Details
|
33 |
+
|
34 |
+
### Model Description
|
35 |
+
- **Model Type:** SetFit
|
36 |
+
- **Sentence Transformer body:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5)
|
37 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
38 |
+
- **Maximum Sequence Length:** 8192 tokens
|
39 |
+
- **Number of Classes:** 7 classes
|
40 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
41 |
+
<!-- - **Language:** Unknown -->
|
42 |
+
<!-- - **License:** Unknown -->
|
43 |
+
|
44 |
+
### Model Sources
|
45 |
+
|
46 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
47 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
48 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
49 |
+
|
50 |
+
### Model Labels
|
51 |
+
| Label | Examples |
|
52 |
+
|:------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
53 |
+
| Term of Art Interpretations & Application | <ul><li>'How do courts in Illinois define "constructive eviction"?'</li><li>'How do Pennsylvania courts define "reasonable suspicion" in DUI cases?'</li><li>'definition of ex parte'</li></ul> |
|
54 |
+
| Out of Scope | <ul><li>'Has Capt. Ashley Heiberger ever testified as an expert witness?'</li><li>'Have you recently attended any weddings or special celebrations?'</li><li>'Have you seen any good movies lately?'</li></ul> |
|
55 |
+
| SDR | <ul><li>'Gonzalez et al. v. Mexico'</li><li>'2021 U.S. Dist. LEXIS 14890'</li><li>'Elizabeth Holmes Theranos ORDER DENYING MOTION FOR RELEASE PENDING APPEAL'</li></ul> |
|
56 |
+
| Identify Current Law | <ul><li>'Does Michigan have a statute of repose?'</li><li>'Mississippi law concerning challenges to changes made in updated HOA regulations'</li><li>'cases on nurse liability for making medication dosage mistake in kentucky'</li></ul> |
|
57 |
+
| Agent decision | <ul><li>'Search for USPTO Patent Decisions: BPAI and PTAB discussing the integration of a judicial exception into practical applications'</li><li>'Are there any EPA Environmental Appeals Board Decisions regarding the guidelines for establishing a "critical habitat" for wildlife?'</li><li>'Find Merit Systems Protection Board decisions regarding when the plain language of a statute must be treated as controlling'</li></ul> |
|
58 |
+
| Q&A - Complex | <ul><li>'Are bloodhounds considered reliable for establishing probable cause in Idaho?'</li><li>'What are the requirements to file a class action lawsuit in Florida?'</li><li>'Can a corporation be held liable for damages caused by an employee driving under the influence of alcohol in New York?'</li></ul> |
|
59 |
+
| Practical Guidance | <ul><li>'What does an "Election of Remedy" clause involve in an indemnity agreement? T'</li><li>'Where is Private Company Corporate Governance Board Resolutions Resource Kit T'</li><li>'If I start a law firm in Michigan, what types of employee leave do I need to provide compared to my current firm in Ohio? T'</li></ul> |
|
60 |
+
|
61 |
+
## Uses
|
62 |
+
|
63 |
+
### Direct Use for Inference
|
64 |
+
|
65 |
+
First install the SetFit library:
|
66 |
+
|
67 |
+
```bash
|
68 |
+
pip install setfit
|
69 |
+
```
|
70 |
+
|
71 |
+
Then you can load this model and run inference.
|
72 |
+
|
73 |
+
```python
|
74 |
+
from setfit import SetFitModel
|
75 |
+
|
76 |
+
# Download from the 🤗 Hub
|
77 |
+
model = SetFitModel.from_pretrained("tonyshaw/setfit_pg_70h_nomic-v1.5")
|
78 |
+
# Run inference
|
79 |
+
preds = model("Ohio aggravated arson cases")
|
80 |
+
```
|
81 |
+
|
82 |
+
<!--
|
83 |
+
### Downstream Use
|
84 |
+
|
85 |
+
*List how someone could finetune this model on their own dataset.*
|
86 |
+
-->
|
87 |
+
|
88 |
+
<!--
|
89 |
+
### Out-of-Scope Use
|
90 |
+
|
91 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
92 |
+
-->
|
93 |
+
|
94 |
+
<!--
|
95 |
+
## Bias, Risks and Limitations
|
96 |
+
|
97 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
98 |
+
-->
|
99 |
+
|
100 |
+
<!--
|
101 |
+
### Recommendations
|
102 |
+
|
103 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
104 |
+
-->
|
105 |
+
|
106 |
+
## Training Details
|
107 |
+
|
108 |
+
### Training Set Metrics
|
109 |
+
| Training set | Min | Median | Max |
|
110 |
+
|:-------------|:----|:--------|:----|
|
111 |
+
| Word count | 1 | 11.2193 | 98 |
|
112 |
+
|
113 |
+
| Label | Training Sample Count |
|
114 |
+
|:------------------------------------------|:----------------------|
|
115 |
+
| Agent decision | 130 |
|
116 |
+
| Identify Current Law | 500 |
|
117 |
+
| Out of Scope | 100 |
|
118 |
+
| Practical Guidance | 41 |
|
119 |
+
| Q&A - Complex | 500 |
|
120 |
+
| SDR | 500 |
|
121 |
+
| Term of Art Interpretations & Application | 500 |
|
122 |
+
|
123 |
+
### Training Hyperparameters
|
124 |
+
- batch_size: (16, 16)
|
125 |
+
- num_epochs: (1, 1)
|
126 |
+
- max_steps: -1
|
127 |
+
- sampling_strategy: oversampling
|
128 |
+
- num_iterations: 10
|
129 |
+
- body_learning_rate: (2e-05, 2e-05)
|
130 |
+
- head_learning_rate: 2e-05
|
131 |
+
- loss: CosineSimilarityLoss
|
132 |
+
- distance_metric: cosine_distance
|
133 |
+
- margin: 0.25
|
134 |
+
- end_to_end: False
|
135 |
+
- use_amp: False
|
136 |
+
- warmup_proportion: 0.1
|
137 |
+
- l2_weight: 0.01
|
138 |
+
- seed: 42
|
139 |
+
- eval_max_steps: -1
|
140 |
+
- load_best_model_at_end: False
|
141 |
+
|
142 |
+
### Training Results
|
143 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
144 |
+
|:------:|:----:|:-------------:|:---------------:|
|
145 |
+
| 0.0004 | 1 | 0.2703 | - |
|
146 |
+
| 0.0176 | 50 | 0.2289 | - |
|
147 |
+
| 0.0352 | 100 | 0.2032 | - |
|
148 |
+
| 0.0528 | 150 | 0.0951 | - |
|
149 |
+
| 0.0704 | 200 | 0.0434 | - |
|
150 |
+
| 0.0881 | 250 | 0.026 | - |
|
151 |
+
| 0.1057 | 300 | 0.0299 | - |
|
152 |
+
| 0.1233 | 350 | 0.02 | - |
|
153 |
+
| 0.1409 | 400 | 0.0136 | - |
|
154 |
+
| 0.1585 | 450 | 0.013 | - |
|
155 |
+
| 0.1761 | 500 | 0.0147 | - |
|
156 |
+
| 0.1937 | 550 | 0.0144 | - |
|
157 |
+
| 0.2113 | 600 | 0.0052 | - |
|
158 |
+
| 0.2290 | 650 | 0.0067 | - |
|
159 |
+
| 0.2466 | 700 | 0.0021 | - |
|
160 |
+
| 0.2642 | 750 | 0.0038 | - |
|
161 |
+
| 0.2818 | 800 | 0.006 | - |
|
162 |
+
| 0.2994 | 850 | 0.0039 | - |
|
163 |
+
| 0.3170 | 900 | 0.0007 | - |
|
164 |
+
| 0.3346 | 950 | 0.0003 | - |
|
165 |
+
| 0.3522 | 1000 | 0.0002 | - |
|
166 |
+
| 0.3698 | 1050 | 0.0026 | - |
|
167 |
+
| 0.3875 | 1100 | 0.0027 | - |
|
168 |
+
| 0.4051 | 1150 | 0.0003 | - |
|
169 |
+
| 0.4227 | 1200 | 0.0012 | - |
|
170 |
+
| 0.4403 | 1250 | 0.0022 | - |
|
171 |
+
| 0.4579 | 1300 | 0.0027 | - |
|
172 |
+
| 0.4755 | 1350 | 0.0014 | - |
|
173 |
+
| 0.4931 | 1400 | 0.0008 | - |
|
174 |
+
| 0.5107 | 1450 | 0.0001 | - |
|
175 |
+
| 0.5284 | 1500 | 0.0013 | - |
|
176 |
+
| 0.5460 | 1550 | 0.0001 | - |
|
177 |
+
| 0.5636 | 1600 | 0.0011 | - |
|
178 |
+
| 0.5812 | 1650 | 0.0 | - |
|
179 |
+
| 0.5988 | 1700 | 0.001 | - |
|
180 |
+
| 0.6164 | 1750 | 0.0001 | - |
|
181 |
+
| 0.6340 | 1800 | 0.0002 | - |
|
182 |
+
| 0.6516 | 1850 | 0.0 | - |
|
183 |
+
| 0.6692 | 1900 | 0.0 | - |
|
184 |
+
| 0.6869 | 1950 | 0.0 | - |
|
185 |
+
| 0.7045 | 2000 | 0.0 | - |
|
186 |
+
| 0.7221 | 2050 | 0.0 | - |
|
187 |
+
| 0.7397 | 2100 | 0.0 | - |
|
188 |
+
| 0.7573 | 2150 | 0.0 | - |
|
189 |
+
| 0.7749 | 2200 | 0.0 | - |
|
190 |
+
| 0.7925 | 2250 | 0.001 | - |
|
191 |
+
| 0.8101 | 2300 | 0.0 | - |
|
192 |
+
| 0.8278 | 2350 | 0.0 | - |
|
193 |
+
| 0.8454 | 2400 | 0.0013 | - |
|
194 |
+
| 0.8630 | 2450 | 0.0 | - |
|
195 |
+
| 0.8806 | 2500 | 0.0001 | - |
|
196 |
+
| 0.8982 | 2550 | 0.0004 | - |
|
197 |
+
| 0.9158 | 2600 | 0.0 | - |
|
198 |
+
| 0.9334 | 2650 | 0.0001 | - |
|
199 |
+
| 0.9510 | 2700 | 0.0 | - |
|
200 |
+
| 0.9687 | 2750 | 0.0 | - |
|
201 |
+
| 0.9863 | 2800 | 0.0 | - |
|
202 |
+
|
203 |
+
### Framework Versions
|
204 |
+
- Python: 3.11.11
|
205 |
+
- SetFit: 1.1.1
|
206 |
+
- Sentence Transformers: 3.4.1
|
207 |
+
- Transformers: 4.48.3
|
208 |
+
- PyTorch: 2.6.0+cu124
|
209 |
+
- Datasets: 3.4.1
|
210 |
+
- Tokenizers: 0.21.1
|
211 |
+
|
212 |
+
## Citation
|
213 |
+
|
214 |
+
### BibTeX
|
215 |
+
```bibtex
|
216 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
217 |
+
doi = {10.48550/ARXIV.2209.11055},
|
218 |
+
url = {https://arxiv.org/abs/2209.11055},
|
219 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
220 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
221 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
222 |
+
publisher = {arXiv},
|
223 |
+
year = {2022},
|
224 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
225 |
+
}
|
226 |
+
```
|
227 |
+
|
228 |
+
<!--
|
229 |
+
## Glossary
|
230 |
+
|
231 |
+
*Clearly define terms in order to be accessible across audiences.*
|
232 |
+
-->
|
233 |
+
|
234 |
+
<!--
|
235 |
+
## Model Card Authors
|
236 |
+
|
237 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
238 |
+
-->
|
239 |
+
|
240 |
+
<!--
|
241 |
+
## Model Card Contact
|
242 |
+
|
243 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
244 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nomic-ai/nomic-embed-text-v1.5",
|
3 |
+
"activation_function": "swiglu",
|
4 |
+
"architectures": [
|
5 |
+
"NomicBertModel"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "nomic-ai/nomic-bert-2048--configuration_hf_nomic_bert.NomicBertConfig",
|
10 |
+
"AutoModel": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertModel",
|
11 |
+
"AutoModelForMaskedLM": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForPreTraining"
|
12 |
+
},
|
13 |
+
"bos_token_id": null,
|
14 |
+
"causal": false,
|
15 |
+
"dense_seq_output": true,
|
16 |
+
"embd_pdrop": 0.0,
|
17 |
+
"eos_token_id": null,
|
18 |
+
"fused_bias_fc": true,
|
19 |
+
"fused_dropout_add_ln": true,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"layer_norm_epsilon": 1e-12,
|
22 |
+
"max_trained_positions": 2048,
|
23 |
+
"mlp_fc1_bias": false,
|
24 |
+
"mlp_fc2_bias": false,
|
25 |
+
"model_type": "nomic_bert",
|
26 |
+
"n_embd": 768,
|
27 |
+
"n_head": 12,
|
28 |
+
"n_inner": 3072,
|
29 |
+
"n_layer": 12,
|
30 |
+
"n_positions": 8192,
|
31 |
+
"pad_vocab_size_multiple": 64,
|
32 |
+
"parallel_block": false,
|
33 |
+
"parallel_block_tied_norm": false,
|
34 |
+
"prenorm": false,
|
35 |
+
"qkv_proj_bias": false,
|
36 |
+
"reorder_and_upcast_attn": false,
|
37 |
+
"resid_pdrop": 0.0,
|
38 |
+
"rotary_emb_base": 1000,
|
39 |
+
"rotary_emb_fraction": 1.0,
|
40 |
+
"rotary_emb_interleaved": false,
|
41 |
+
"rotary_emb_scale_base": null,
|
42 |
+
"rotary_scaling_factor": null,
|
43 |
+
"scale_attn_by_inverse_layer_idx": false,
|
44 |
+
"scale_attn_weights": true,
|
45 |
+
"summary_activation": null,
|
46 |
+
"summary_first_dropout": 0.0,
|
47 |
+
"summary_proj_to_labels": true,
|
48 |
+
"summary_type": "cls_index",
|
49 |
+
"summary_use_proj": true,
|
50 |
+
"torch_dtype": "float32",
|
51 |
+
"transformers_version": "4.48.3",
|
52 |
+
"type_vocab_size": 2,
|
53 |
+
"use_cache": true,
|
54 |
+
"use_flash_attn": true,
|
55 |
+
"use_rms_norm": false,
|
56 |
+
"use_xentropy": true,
|
57 |
+
"vocab_size": 30528
|
58 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.48.3",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"Agent decision",
|
4 |
+
"Identify Current Law",
|
5 |
+
"Out of Scope",
|
6 |
+
"Practical Guidance",
|
7 |
+
"Q&A - Complex",
|
8 |
+
"SDR",
|
9 |
+
"Term of Art Interpretations & Application"
|
10 |
+
],
|
11 |
+
"normalize_embeddings": false
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd6bca277fc50f599e6fceafac2107d02bf07f817a97667f977bfc054364a373
|
3 |
+
size 546938168
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f1d5858b381eeb77cb3bf0b5f080b658088d33119b45e5f36c35c7fd05cebf5
|
3 |
+
size 45055
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "BertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|