---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Is a residential portion of a building that sells alcohol considered "licensed
premises" in indiana
- text: In Michigan, what criteria do courts consider in granting grandparent visitation
rights?
- text: Ohio aggravated arson cases
- text: In Texas, what protections exist for whistleblowers?
- text: What did you have for breakfast?
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: nomic-ai/nomic-embed-text-v1.5
---
# SetFit with nomic-ai/nomic-embed-text-v1.5
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 8192 tokens
- **Number of Classes:** 7 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Term of Art Interpretations & Application |
- 'How do courts in Illinois define "constructive eviction"?'
- 'How do Pennsylvania courts define "reasonable suspicion" in DUI cases?'
- 'definition of ex parte'
|
| Out of Scope | - 'Has Capt. Ashley Heiberger ever testified as an expert witness?'
- 'Have you recently attended any weddings or special celebrations?'
- 'Have you seen any good movies lately?'
|
| SDR | - 'Gonzalez et al. v. Mexico'
- '2021 U.S. Dist. LEXIS 14890'
- 'Elizabeth Holmes Theranos ORDER DENYING MOTION FOR RELEASE PENDING APPEAL'
|
| Identify Current Law | - 'Does Michigan have a statute of repose?'
- 'Mississippi law concerning challenges to changes made in updated HOA regulations'
- 'cases on nurse liability for making medication dosage mistake in kentucky'
|
| Agent decision | - 'Search for USPTO Patent Decisions: BPAI and PTAB discussing the integration of a judicial exception into practical applications'
- 'Are there any EPA Environmental Appeals Board Decisions regarding the guidelines for establishing a "critical habitat" for wildlife?'
- 'Find Merit Systems Protection Board decisions regarding when the plain language of a statute must be treated as controlling'
|
| Q&A - Complex | - 'Are bloodhounds considered reliable for establishing probable cause in Idaho?'
- 'What are the requirements to file a class action lawsuit in Florida?'
- 'Can a corporation be held liable for damages caused by an employee driving under the influence of alcohol in New York?'
|
| Practical Guidance | - 'What does an "Election of Remedy" clause involve in an indemnity agreement? T'
- 'Where is Private Company Corporate Governance Board Resolutions Resource Kit T'
- 'If I start a law firm in Michigan, what types of employee leave do I need to provide compared to my current firm in Ohio? T'
|
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("tonyshaw/setfit_pg_70h_nomic-v1.5")
# Run inference
preds = model("Ohio aggravated arson cases")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 1 | 11.2193 | 98 |
| Label | Training Sample Count |
|:------------------------------------------|:----------------------|
| Agent decision | 130 |
| Identify Current Law | 500 |
| Out of Scope | 100 |
| Practical Guidance | 41 |
| Q&A - Complex | 500 |
| SDR | 500 |
| Term of Art Interpretations & Application | 500 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0004 | 1 | 0.2703 | - |
| 0.0176 | 50 | 0.2289 | - |
| 0.0352 | 100 | 0.2032 | - |
| 0.0528 | 150 | 0.0951 | - |
| 0.0704 | 200 | 0.0434 | - |
| 0.0881 | 250 | 0.026 | - |
| 0.1057 | 300 | 0.0299 | - |
| 0.1233 | 350 | 0.02 | - |
| 0.1409 | 400 | 0.0136 | - |
| 0.1585 | 450 | 0.013 | - |
| 0.1761 | 500 | 0.0147 | - |
| 0.1937 | 550 | 0.0144 | - |
| 0.2113 | 600 | 0.0052 | - |
| 0.2290 | 650 | 0.0067 | - |
| 0.2466 | 700 | 0.0021 | - |
| 0.2642 | 750 | 0.0038 | - |
| 0.2818 | 800 | 0.006 | - |
| 0.2994 | 850 | 0.0039 | - |
| 0.3170 | 900 | 0.0007 | - |
| 0.3346 | 950 | 0.0003 | - |
| 0.3522 | 1000 | 0.0002 | - |
| 0.3698 | 1050 | 0.0026 | - |
| 0.3875 | 1100 | 0.0027 | - |
| 0.4051 | 1150 | 0.0003 | - |
| 0.4227 | 1200 | 0.0012 | - |
| 0.4403 | 1250 | 0.0022 | - |
| 0.4579 | 1300 | 0.0027 | - |
| 0.4755 | 1350 | 0.0014 | - |
| 0.4931 | 1400 | 0.0008 | - |
| 0.5107 | 1450 | 0.0001 | - |
| 0.5284 | 1500 | 0.0013 | - |
| 0.5460 | 1550 | 0.0001 | - |
| 0.5636 | 1600 | 0.0011 | - |
| 0.5812 | 1650 | 0.0 | - |
| 0.5988 | 1700 | 0.001 | - |
| 0.6164 | 1750 | 0.0001 | - |
| 0.6340 | 1800 | 0.0002 | - |
| 0.6516 | 1850 | 0.0 | - |
| 0.6692 | 1900 | 0.0 | - |
| 0.6869 | 1950 | 0.0 | - |
| 0.7045 | 2000 | 0.0 | - |
| 0.7221 | 2050 | 0.0 | - |
| 0.7397 | 2100 | 0.0 | - |
| 0.7573 | 2150 | 0.0 | - |
| 0.7749 | 2200 | 0.0 | - |
| 0.7925 | 2250 | 0.001 | - |
| 0.8101 | 2300 | 0.0 | - |
| 0.8278 | 2350 | 0.0 | - |
| 0.8454 | 2400 | 0.0013 | - |
| 0.8630 | 2450 | 0.0 | - |
| 0.8806 | 2500 | 0.0001 | - |
| 0.8982 | 2550 | 0.0004 | - |
| 0.9158 | 2600 | 0.0 | - |
| 0.9334 | 2650 | 0.0001 | - |
| 0.9510 | 2700 | 0.0 | - |
| 0.9687 | 2750 | 0.0 | - |
| 0.9863 | 2800 | 0.0 | - |
### Framework Versions
- Python: 3.11.11
- SetFit: 1.1.1
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.6.0+cu124
- Datasets: 3.4.1
- Tokenizers: 0.21.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```