topguns commited on
Commit
ed065f2
·
verified ·
1 Parent(s): 92f808e

End of training

Browse files
README.md CHANGED
@@ -1,199 +1,408 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: other
4
+ base_model: nvidia/mit-b0
5
+ tags:
6
+ - vision
7
+ - image-segmentation
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: segformer-b0-finetuned-pallet-detection
11
+ results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # segformer-b0-finetuned-pallet-detection
18
+
19
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0641
22
+ - Mean Iou: 0.5842
23
+ - Mean Accuracy: 0.8779
24
+ - Overall Accuracy: 0.9589
25
+ - Accuracy Background: nan
26
+ - Accuracy Ground: 0.9812
27
+ - Accuracy Pallet: 0.7747
28
+ - Iou Background: 0.0
29
+ - Iou Ground: 0.9806
30
+ - Iou Pallet: 0.7720
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 6e-05
50
+ - train_batch_size: 2
51
+ - eval_batch_size: 2
52
+ - seed: 42
53
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 50
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Ground | Accuracy Pallet | Iou Background | Iou Ground | Iou Pallet |
60
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:---------------:|:---------------:|:--------------:|:----------:|:----------:|
61
+ | 0.6493 | 0.1471 | 20 | 0.8578 | 0.3530 | 0.5369 | 0.8771 | nan | 0.9709 | 0.1028 | 0.0 | 0.9607 | 0.0982 |
62
+ | 0.7356 | 0.2941 | 40 | 0.5028 | 0.3193 | 0.4823 | 0.8580 | nan | 0.9617 | 0.0028 | 0.0 | 0.9551 | 0.0028 |
63
+ | 0.6322 | 0.4412 | 60 | 0.3811 | 0.3222 | 0.4873 | 0.8605 | nan | 0.9635 | 0.0111 | 0.0 | 0.9556 | 0.0111 |
64
+ | 0.5455 | 0.5882 | 80 | 0.3640 | 0.3269 | 0.4949 | 0.8705 | nan | 0.9740 | 0.0158 | 0.0 | 0.9650 | 0.0158 |
65
+ | 0.2644 | 0.7353 | 100 | 0.3423 | 0.3315 | 0.5003 | 0.8518 | nan | 0.9488 | 0.0518 | 0.0 | 0.9427 | 0.0518 |
66
+ | 0.3402 | 0.8824 | 120 | 0.2784 | 0.3372 | 0.5126 | 0.8794 | nan | 0.9805 | 0.0446 | 0.0 | 0.9670 | 0.0445 |
67
+ | 0.2856 | 1.0294 | 140 | 0.2564 | 0.3815 | 0.5762 | 0.8930 | nan | 0.9804 | 0.1720 | 0.0 | 0.9729 | 0.1717 |
68
+ | 0.3889 | 1.1765 | 160 | 0.2502 | 0.4139 | 0.6238 | 0.8857 | nan | 0.9579 | 0.2897 | 0.0 | 0.9528 | 0.2889 |
69
+ | 0.2223 | 1.3235 | 180 | 0.2078 | 0.3975 | 0.6005 | 0.8975 | nan | 0.9794 | 0.2216 | 0.0 | 0.9711 | 0.2215 |
70
+ | 0.296 | 1.4706 | 200 | 0.1875 | 0.3776 | 0.5682 | 0.8747 | nan | 0.9592 | 0.1772 | 0.0 | 0.9560 | 0.1769 |
71
+ | 0.1564 | 1.6176 | 220 | 0.1962 | 0.4612 | 0.6958 | 0.9216 | nan | 0.9839 | 0.4076 | 0.0 | 0.9776 | 0.4059 |
72
+ | 0.2169 | 1.7647 | 240 | 0.1488 | 0.4346 | 0.6543 | 0.9030 | nan | 0.9716 | 0.3370 | 0.0 | 0.9678 | 0.3359 |
73
+ | 0.1187 | 1.9118 | 260 | 0.1542 | 0.4879 | 0.7357 | 0.9263 | nan | 0.9789 | 0.4925 | 0.0 | 0.9728 | 0.4908 |
74
+ | 0.3187 | 2.0588 | 280 | 0.1481 | 0.4888 | 0.7365 | 0.9231 | nan | 0.9746 | 0.4984 | 0.0 | 0.9714 | 0.4949 |
75
+ | 0.1715 | 2.2059 | 300 | 0.1472 | 0.4437 | 0.6677 | 0.9107 | nan | 0.9777 | 0.3576 | 0.0 | 0.9753 | 0.3557 |
76
+ | 0.0845 | 2.3529 | 320 | 0.1300 | 0.4869 | 0.7337 | 0.9226 | nan | 0.9747 | 0.4927 | 0.0 | 0.9704 | 0.4903 |
77
+ | 0.1009 | 2.5 | 340 | 0.1323 | 0.4577 | 0.6902 | 0.9091 | nan | 0.9694 | 0.4110 | 0.0 | 0.9641 | 0.4091 |
78
+ | 0.1842 | 2.6471 | 360 | 0.1282 | 0.5127 | 0.7750 | 0.9331 | nan | 0.9767 | 0.5733 | 0.0 | 0.9717 | 0.5665 |
79
+ | 0.162 | 2.7941 | 380 | 0.1153 | 0.4968 | 0.7491 | 0.9303 | nan | 0.9803 | 0.5180 | 0.0 | 0.9773 | 0.5129 |
80
+ | 0.1324 | 2.9412 | 400 | 0.1227 | 0.4742 | 0.7158 | 0.9120 | nan | 0.9661 | 0.4655 | 0.0 | 0.9584 | 0.4641 |
81
+ | 0.1043 | 3.0882 | 420 | 0.1135 | 0.4700 | 0.7070 | 0.9107 | nan | 0.9669 | 0.4472 | 0.0 | 0.9659 | 0.4440 |
82
+ | 0.104 | 3.2353 | 440 | 0.1055 | 0.5424 | 0.8197 | 0.9447 | nan | 0.9792 | 0.6602 | 0.0 | 0.9773 | 0.6497 |
83
+ | 0.1063 | 3.3824 | 460 | 0.1273 | 0.4985 | 0.7506 | 0.9095 | nan | 0.9533 | 0.5480 | 0.0 | 0.9498 | 0.5457 |
84
+ | 0.198 | 3.5294 | 480 | 0.1032 | 0.4994 | 0.7521 | 0.9287 | nan | 0.9774 | 0.5267 | 0.0 | 0.9747 | 0.5236 |
85
+ | 0.1073 | 3.6765 | 500 | 0.1088 | 0.5063 | 0.7633 | 0.9258 | nan | 0.9706 | 0.5560 | 0.0 | 0.9647 | 0.5542 |
86
+ | 0.1215 | 3.8235 | 520 | 0.0983 | 0.5215 | 0.7859 | 0.9368 | nan | 0.9784 | 0.5935 | 0.0 | 0.9729 | 0.5915 |
87
+ | 0.0767 | 3.9706 | 540 | 0.1068 | 0.4931 | 0.7435 | 0.9123 | nan | 0.9588 | 0.5282 | 0.0 | 0.9530 | 0.5263 |
88
+ | 0.1045 | 4.1176 | 560 | 0.1119 | 0.5189 | 0.7832 | 0.9128 | nan | 0.9485 | 0.6179 | 0.0 | 0.9454 | 0.6114 |
89
+ | 0.0544 | 4.2647 | 580 | 0.1037 | 0.5170 | 0.7799 | 0.9203 | nan | 0.9590 | 0.6007 | 0.0 | 0.9574 | 0.5937 |
90
+ | 0.0699 | 4.4118 | 600 | 0.0978 | 0.5413 | 0.8227 | 0.9383 | nan | 0.9702 | 0.6753 | 0.0 | 0.9661 | 0.6577 |
91
+ | 0.0992 | 4.5588 | 620 | 0.0864 | 0.5303 | 0.8012 | 0.9456 | nan | 0.9855 | 0.6170 | 0.0 | 0.9781 | 0.6128 |
92
+ | 0.0637 | 4.7059 | 640 | 0.0911 | 0.5397 | 0.8144 | 0.9363 | nan | 0.9699 | 0.6590 | 0.0 | 0.9659 | 0.6533 |
93
+ | 0.0459 | 4.8529 | 660 | 0.0953 | 0.5541 | 0.8423 | 0.9355 | nan | 0.9612 | 0.7233 | 0.0 | 0.9587 | 0.7035 |
94
+ | 0.0976 | 5.0 | 680 | 0.0999 | 0.5643 | 0.8559 | 0.9419 | nan | 0.9656 | 0.7462 | 0.0 | 0.9609 | 0.7321 |
95
+ | 0.1356 | 5.1471 | 700 | 0.0849 | 0.5577 | 0.8452 | 0.9527 | nan | 0.9824 | 0.7080 | 0.0 | 0.9776 | 0.6957 |
96
+ | 0.0818 | 5.2941 | 720 | 0.0887 | 0.5323 | 0.8048 | 0.9360 | nan | 0.9721 | 0.6375 | 0.0 | 0.9678 | 0.6292 |
97
+ | 0.0546 | 5.4412 | 740 | 0.0894 | 0.5340 | 0.8071 | 0.9329 | nan | 0.9675 | 0.6468 | 0.0 | 0.9631 | 0.6389 |
98
+ | 0.0761 | 5.5882 | 760 | 0.0775 | 0.5657 | 0.8567 | 0.9604 | nan | 0.9890 | 0.7244 | 0.0 | 0.9834 | 0.7137 |
99
+ | 0.1308 | 5.7353 | 780 | 0.0860 | 0.5264 | 0.7935 | 0.9326 | nan | 0.9710 | 0.6160 | 0.0 | 0.9681 | 0.6112 |
100
+ | 0.1134 | 5.8824 | 800 | 0.0858 | 0.5770 | 0.8716 | 0.9558 | nan | 0.9790 | 0.7643 | 0.0 | 0.9757 | 0.7554 |
101
+ | 0.065 | 6.0294 | 820 | 0.0855 | 0.5343 | 0.8065 | 0.9321 | nan | 0.9668 | 0.6463 | 0.0 | 0.9653 | 0.6376 |
102
+ | 0.0583 | 6.1765 | 840 | 0.0888 | 0.5237 | 0.7895 | 0.9318 | nan | 0.9711 | 0.6080 | 0.0 | 0.9675 | 0.6036 |
103
+ | 0.0616 | 6.3235 | 860 | 0.0809 | 0.5715 | 0.8641 | 0.9507 | nan | 0.9746 | 0.7535 | 0.0 | 0.9724 | 0.7421 |
104
+ | 0.0419 | 6.4706 | 880 | 0.0925 | 0.4956 | 0.7453 | 0.9243 | nan | 0.9736 | 0.5169 | 0.0 | 0.9721 | 0.5146 |
105
+ | 0.0663 | 6.6176 | 900 | 0.0823 | 0.5089 | 0.7659 | 0.9321 | nan | 0.9779 | 0.5539 | 0.0 | 0.9744 | 0.5523 |
106
+ | 0.0646 | 6.7647 | 920 | 0.0690 | 0.5619 | 0.8472 | 0.9562 | nan | 0.9863 | 0.7080 | 0.0 | 0.9842 | 0.7016 |
107
+ | 0.126 | 6.9118 | 940 | 0.0791 | 0.5665 | 0.8538 | 0.9470 | nan | 0.9727 | 0.7350 | 0.0 | 0.9703 | 0.7291 |
108
+ | 0.0437 | 7.0588 | 960 | 0.0720 | 0.5609 | 0.8441 | 0.9537 | nan | 0.9839 | 0.7043 | 0.0 | 0.9831 | 0.6996 |
109
+ | 0.042 | 7.2059 | 980 | 0.0803 | 0.5540 | 0.8349 | 0.9400 | nan | 0.9690 | 0.7008 | 0.0 | 0.9682 | 0.6939 |
110
+ | 0.0415 | 7.3529 | 1000 | 0.0759 | 0.5392 | 0.8115 | 0.9383 | nan | 0.9733 | 0.6497 | 0.0 | 0.9727 | 0.6451 |
111
+ | 0.0837 | 7.5 | 1020 | 0.0674 | 0.5702 | 0.8603 | 0.9621 | nan | 0.9902 | 0.7304 | 0.0 | 0.9844 | 0.7262 |
112
+ | 0.1585 | 7.6471 | 1040 | 0.0675 | 0.5649 | 0.8516 | 0.9567 | nan | 0.9857 | 0.7175 | 0.0 | 0.9803 | 0.7143 |
113
+ | 0.0555 | 7.7941 | 1060 | 0.0681 | 0.5530 | 0.8325 | 0.9468 | nan | 0.9783 | 0.6866 | 0.0 | 0.9772 | 0.6816 |
114
+ | 0.0438 | 7.9412 | 1080 | 0.0687 | 0.5723 | 0.8653 | 0.9619 | nan | 0.9886 | 0.7419 | 0.0 | 0.9837 | 0.7333 |
115
+ | 0.0542 | 8.0882 | 1100 | 0.0834 | 0.5637 | 0.8495 | 0.9427 | nan | 0.9684 | 0.7306 | 0.0 | 0.9670 | 0.7240 |
116
+ | 0.0626 | 8.2353 | 1120 | 0.0773 | 0.5760 | 0.8702 | 0.9493 | nan | 0.9711 | 0.7693 | 0.0 | 0.9670 | 0.7611 |
117
+ | 0.0968 | 8.3824 | 1140 | 0.0776 | 0.5400 | 0.8131 | 0.9368 | nan | 0.9709 | 0.6553 | 0.0 | 0.9687 | 0.6513 |
118
+ | 0.0904 | 8.5294 | 1160 | 0.0768 | 0.5450 | 0.8220 | 0.9448 | nan | 0.9787 | 0.6654 | 0.0 | 0.9729 | 0.6619 |
119
+ | 0.1331 | 8.6765 | 1180 | 0.0981 | 0.5138 | 0.7730 | 0.9191 | nan | 0.9594 | 0.5867 | 0.0 | 0.9566 | 0.5847 |
120
+ | 0.0495 | 8.8235 | 1200 | 0.0686 | 0.5509 | 0.8302 | 0.9546 | nan | 0.9889 | 0.6716 | 0.0 | 0.9838 | 0.6689 |
121
+ | 0.0529 | 8.9706 | 1220 | 0.0706 | 0.5557 | 0.8379 | 0.9504 | nan | 0.9814 | 0.6943 | 0.0 | 0.9771 | 0.6898 |
122
+ | 0.0338 | 9.1176 | 1240 | 0.0765 | 0.5482 | 0.8264 | 0.9448 | nan | 0.9775 | 0.6753 | 0.0 | 0.9734 | 0.6712 |
123
+ | 0.0527 | 9.2647 | 1260 | 0.0705 | 0.5509 | 0.8301 | 0.9532 | nan | 0.9872 | 0.6731 | 0.0 | 0.9835 | 0.6692 |
124
+ | 0.0551 | 9.4118 | 1280 | 0.0858 | 0.5827 | 0.8783 | 0.9501 | nan | 0.9699 | 0.7867 | 0.0 | 0.9686 | 0.7794 |
125
+ | 0.0592 | 9.5588 | 1300 | 0.0681 | 0.5666 | 0.8547 | 0.9537 | nan | 0.9810 | 0.7283 | 0.0 | 0.9772 | 0.7226 |
126
+ | 0.0878 | 9.7059 | 1320 | 0.0724 | 0.5779 | 0.8718 | 0.9562 | nan | 0.9794 | 0.7641 | 0.0 | 0.9755 | 0.7582 |
127
+ | 0.0457 | 9.8529 | 1340 | 0.0775 | 0.5438 | 0.8187 | 0.9396 | nan | 0.9730 | 0.6645 | 0.0 | 0.9696 | 0.6619 |
128
+ | 0.0566 | 10.0 | 1360 | 0.0647 | 0.5755 | 0.8679 | 0.9582 | nan | 0.9831 | 0.7528 | 0.0 | 0.9785 | 0.7479 |
129
+ | 0.0599 | 10.1471 | 1380 | 0.0692 | 0.5657 | 0.8533 | 0.9522 | nan | 0.9795 | 0.7271 | 0.0 | 0.9740 | 0.7230 |
130
+ | 0.0755 | 10.2941 | 1400 | 0.0700 | 0.5464 | 0.8223 | 0.9480 | nan | 0.9827 | 0.6620 | 0.0 | 0.9794 | 0.6599 |
131
+ | 0.0248 | 10.4412 | 1420 | 0.0734 | 0.5441 | 0.8178 | 0.9400 | nan | 0.9737 | 0.6619 | 0.0 | 0.9732 | 0.6593 |
132
+ | 0.0524 | 10.5882 | 1440 | 0.0656 | 0.5672 | 0.8550 | 0.9552 | nan | 0.9828 | 0.7271 | 0.0 | 0.9801 | 0.7215 |
133
+ | 0.046 | 10.7353 | 1460 | 0.0664 | 0.5737 | 0.8657 | 0.9524 | nan | 0.9763 | 0.7551 | 0.0 | 0.9730 | 0.7481 |
134
+ | 0.0648 | 10.8824 | 1480 | 0.0708 | 0.5841 | 0.8796 | 0.9533 | nan | 0.9737 | 0.7855 | 0.0 | 0.9715 | 0.7809 |
135
+ | 0.0496 | 11.0294 | 1500 | 0.0579 | 0.5690 | 0.8562 | 0.9604 | nan | 0.9891 | 0.7234 | 0.0 | 0.9860 | 0.7210 |
136
+ | 0.0424 | 11.1765 | 1520 | 0.0573 | 0.5883 | 0.8906 | 0.9616 | nan | 0.9811 | 0.8001 | 0.0 | 0.9797 | 0.7852 |
137
+ | 0.0376 | 11.3235 | 1540 | 0.0585 | 0.5731 | 0.8637 | 0.9636 | nan | 0.9911 | 0.7363 | 0.0 | 0.9858 | 0.7335 |
138
+ | 0.2023 | 11.4706 | 1560 | 0.0645 | 0.5663 | 0.8521 | 0.9506 | nan | 0.9777 | 0.7265 | 0.0 | 0.9761 | 0.7227 |
139
+ | 0.0387 | 11.6176 | 1580 | 0.0602 | 0.5666 | 0.8541 | 0.9594 | nan | 0.9884 | 0.7198 | 0.0 | 0.9841 | 0.7158 |
140
+ | 0.0343 | 11.7647 | 1600 | 0.0638 | 0.5538 | 0.8330 | 0.9468 | nan | 0.9782 | 0.6878 | 0.0 | 0.9764 | 0.6848 |
141
+ | 0.0351 | 11.9118 | 1620 | 0.0583 | 0.5744 | 0.8644 | 0.9558 | nan | 0.9811 | 0.7478 | 0.0 | 0.9799 | 0.7432 |
142
+ | 0.0515 | 12.0588 | 1640 | 0.0554 | 0.5880 | 0.8851 | 0.9660 | nan | 0.9883 | 0.7819 | 0.0 | 0.9861 | 0.7780 |
143
+ | 0.0249 | 12.2059 | 1660 | 0.0598 | 0.5844 | 0.8805 | 0.9571 | nan | 0.9783 | 0.7827 | 0.0 | 0.9756 | 0.7776 |
144
+ | 0.0212 | 12.3529 | 1680 | 0.0633 | 0.5854 | 0.8810 | 0.9546 | nan | 0.9749 | 0.7872 | 0.0 | 0.9741 | 0.7822 |
145
+ | 0.0605 | 12.5 | 1700 | 0.0572 | 0.5669 | 0.8533 | 0.9576 | nan | 0.9864 | 0.7203 | 0.0 | 0.9831 | 0.7177 |
146
+ | 0.0319 | 12.6471 | 1720 | 0.0613 | 0.5763 | 0.8688 | 0.9598 | nan | 0.9849 | 0.7528 | 0.0 | 0.9802 | 0.7487 |
147
+ | 0.0229 | 12.7941 | 1740 | 0.0647 | 0.5881 | 0.8866 | 0.9561 | nan | 0.9752 | 0.7980 | 0.0 | 0.9721 | 0.7921 |
148
+ | 0.1295 | 12.9412 | 1760 | 0.0900 | 0.5760 | 0.8669 | 0.9457 | nan | 0.9674 | 0.7664 | 0.0 | 0.9659 | 0.7621 |
149
+ | 0.0373 | 13.0882 | 1780 | 0.0800 | 0.5706 | 0.8605 | 0.9497 | nan | 0.9742 | 0.7468 | 0.0 | 0.9696 | 0.7423 |
150
+ | 0.0334 | 13.2353 | 1800 | 0.0844 | 0.5492 | 0.8257 | 0.9406 | nan | 0.9723 | 0.6792 | 0.0 | 0.9716 | 0.6759 |
151
+ | 0.0696 | 13.3824 | 1820 | 0.0666 | 0.5738 | 0.8630 | 0.9498 | nan | 0.9738 | 0.7522 | 0.0 | 0.9730 | 0.7483 |
152
+ | 0.0287 | 13.5294 | 1840 | 0.0723 | 0.5527 | 0.8311 | 0.9425 | nan | 0.9732 | 0.6891 | 0.0 | 0.9720 | 0.6862 |
153
+ | 0.029 | 13.6765 | 1860 | 0.0704 | 0.5633 | 0.8474 | 0.9479 | nan | 0.9756 | 0.7192 | 0.0 | 0.9739 | 0.7160 |
154
+ | 0.0479 | 13.8235 | 1880 | 0.0691 | 0.5699 | 0.8582 | 0.9498 | nan | 0.9750 | 0.7414 | 0.0 | 0.9733 | 0.7363 |
155
+ | 0.0258 | 13.9706 | 1900 | 0.0890 | 0.5742 | 0.8648 | 0.9415 | nan | 0.9626 | 0.7670 | 0.0 | 0.9619 | 0.7608 |
156
+ | 0.0177 | 14.1176 | 1920 | 0.0675 | 0.5747 | 0.8660 | 0.9549 | nan | 0.9794 | 0.7525 | 0.0 | 0.9772 | 0.7468 |
157
+ | 0.031 | 14.2647 | 1940 | 0.0622 | 0.5625 | 0.8463 | 0.9524 | nan | 0.9817 | 0.7110 | 0.0 | 0.9809 | 0.7066 |
158
+ | 0.1429 | 14.4118 | 1960 | 0.0583 | 0.5646 | 0.8494 | 0.9562 | nan | 0.9857 | 0.7131 | 0.0 | 0.9842 | 0.7097 |
159
+ | 0.0566 | 14.5588 | 1980 | 0.0727 | 0.5777 | 0.8693 | 0.9470 | nan | 0.9684 | 0.7702 | 0.0 | 0.9675 | 0.7657 |
160
+ | 0.0251 | 14.7059 | 2000 | 0.0681 | 0.5847 | 0.8810 | 0.9571 | nan | 0.9780 | 0.7839 | 0.0 | 0.9758 | 0.7782 |
161
+ | 0.0653 | 14.8529 | 2020 | 0.0611 | 0.5721 | 0.8609 | 0.9557 | nan | 0.9818 | 0.7399 | 0.0 | 0.9811 | 0.7351 |
162
+ | 0.0466 | 15.0 | 2040 | 0.0772 | 0.5947 | 0.8966 | 0.9559 | nan | 0.9723 | 0.8208 | 0.0 | 0.9703 | 0.8138 |
163
+ | 0.045 | 15.1471 | 2060 | 0.0696 | 0.5857 | 0.8815 | 0.9530 | nan | 0.9728 | 0.7901 | 0.0 | 0.9721 | 0.7850 |
164
+ | 0.0622 | 15.2941 | 2080 | 0.0718 | 0.5614 | 0.8443 | 0.9480 | nan | 0.9766 | 0.7119 | 0.0 | 0.9758 | 0.7083 |
165
+ | 0.0423 | 15.4412 | 2100 | 0.0665 | 0.5784 | 0.8701 | 0.9548 | nan | 0.9782 | 0.7621 | 0.0 | 0.9775 | 0.7578 |
166
+ | 0.0162 | 15.5882 | 2120 | 0.0648 | 0.5779 | 0.8699 | 0.9558 | nan | 0.9795 | 0.7603 | 0.0 | 0.9780 | 0.7557 |
167
+ | 0.0356 | 15.7353 | 2140 | 0.0699 | 0.5825 | 0.8767 | 0.9517 | nan | 0.9723 | 0.7811 | 0.0 | 0.9719 | 0.7757 |
168
+ | 0.0456 | 15.8824 | 2160 | 0.0647 | 0.5826 | 0.8767 | 0.9553 | nan | 0.9770 | 0.7764 | 0.0 | 0.9761 | 0.7716 |
169
+ | 0.0376 | 16.0294 | 2180 | 0.0636 | 0.5651 | 0.8496 | 0.9511 | nan | 0.9791 | 0.7201 | 0.0 | 0.9785 | 0.7168 |
170
+ | 0.0489 | 16.1765 | 2200 | 0.0687 | 0.5684 | 0.8544 | 0.9522 | nan | 0.9791 | 0.7296 | 0.0 | 0.9785 | 0.7266 |
171
+ | 0.0375 | 16.3235 | 2220 | 0.0677 | 0.5898 | 0.8878 | 0.9593 | nan | 0.9790 | 0.7967 | 0.0 | 0.9778 | 0.7914 |
172
+ | 0.0282 | 16.4706 | 2240 | 0.0693 | 0.5909 | 0.8894 | 0.9588 | nan | 0.9779 | 0.8009 | 0.0 | 0.9772 | 0.7957 |
173
+ | 0.0343 | 16.6176 | 2260 | 0.0658 | 0.5999 | 0.9033 | 0.9634 | nan | 0.9800 | 0.8265 | 0.0 | 0.9792 | 0.8204 |
174
+ | 0.0215 | 16.7647 | 2280 | 0.0730 | 0.5572 | 0.8373 | 0.9458 | nan | 0.9758 | 0.6988 | 0.0 | 0.9751 | 0.6966 |
175
+ | 0.0242 | 16.9118 | 2300 | 0.0651 | 0.5871 | 0.8837 | 0.9550 | nan | 0.9746 | 0.7928 | 0.0 | 0.9742 | 0.7869 |
176
+ | 0.0223 | 17.0588 | 2320 | 0.0660 | 0.5961 | 0.8971 | 0.9573 | nan | 0.9739 | 0.8202 | 0.0 | 0.9733 | 0.8149 |
177
+ | 0.0477 | 17.2059 | 2340 | 0.0608 | 0.5858 | 0.8813 | 0.9595 | nan | 0.9811 | 0.7816 | 0.0 | 0.9802 | 0.7771 |
178
+ | 0.0233 | 17.3529 | 2360 | 0.0583 | 0.5744 | 0.8634 | 0.9576 | nan | 0.9836 | 0.7433 | 0.0 | 0.9827 | 0.7404 |
179
+ | 0.0395 | 17.5 | 2380 | 0.0618 | 0.5744 | 0.8637 | 0.9536 | nan | 0.9785 | 0.7489 | 0.0 | 0.9776 | 0.7455 |
180
+ | 0.0375 | 17.6471 | 2400 | 0.0579 | 0.5679 | 0.8536 | 0.9545 | nan | 0.9823 | 0.7249 | 0.0 | 0.9819 | 0.7217 |
181
+ | 0.0314 | 17.7941 | 2420 | 0.0540 | 0.5850 | 0.8803 | 0.9626 | nan | 0.9853 | 0.7754 | 0.0 | 0.9843 | 0.7708 |
182
+ | 0.0264 | 17.9412 | 2440 | 0.0574 | 0.5986 | 0.9012 | 0.9649 | nan | 0.9825 | 0.8199 | 0.0 | 0.9813 | 0.8144 |
183
+ | 0.1579 | 18.0882 | 2460 | 0.0557 | 0.5677 | 0.8532 | 0.9575 | nan | 0.9863 | 0.7201 | 0.0 | 0.9852 | 0.7177 |
184
+ | 0.0183 | 18.2353 | 2480 | 0.0514 | 0.5886 | 0.8860 | 0.9647 | nan | 0.9864 | 0.7856 | 0.0 | 0.9853 | 0.7805 |
185
+ | 0.0195 | 18.3824 | 2500 | 0.0481 | 0.6081 | 0.9164 | 0.9733 | nan | 0.9890 | 0.8439 | 0.0 | 0.9879 | 0.8364 |
186
+ | 0.0739 | 18.5294 | 2520 | 0.0510 | 0.5900 | 0.8876 | 0.9647 | nan | 0.9860 | 0.7893 | 0.0 | 0.9850 | 0.7850 |
187
+ | 0.0126 | 18.6765 | 2540 | 0.0538 | 0.5897 | 0.8875 | 0.9655 | nan | 0.9870 | 0.7880 | 0.0 | 0.9858 | 0.7832 |
188
+ | 0.0289 | 18.8235 | 2560 | 0.0552 | 0.5850 | 0.8810 | 0.9606 | nan | 0.9826 | 0.7795 | 0.0 | 0.9803 | 0.7748 |
189
+ | 0.1115 | 18.9706 | 2580 | 0.0488 | 0.5915 | 0.8898 | 0.9674 | nan | 0.9888 | 0.7908 | 0.0 | 0.9874 | 0.7871 |
190
+ | 0.0315 | 19.1176 | 2600 | 0.0510 | 0.5872 | 0.8834 | 0.9635 | nan | 0.9856 | 0.7813 | 0.0 | 0.9848 | 0.7769 |
191
+ | 0.0304 | 19.2647 | 2620 | 0.0527 | 0.5782 | 0.8702 | 0.9640 | nan | 0.9899 | 0.7506 | 0.0 | 0.9877 | 0.7469 |
192
+ | 0.0546 | 19.4118 | 2640 | 0.0521 | 0.5973 | 0.8990 | 0.9664 | nan | 0.9850 | 0.8129 | 0.0 | 0.9843 | 0.8075 |
193
+ | 0.0263 | 19.5588 | 2660 | 0.0562 | 0.5924 | 0.8917 | 0.9597 | nan | 0.9784 | 0.8049 | 0.0 | 0.9778 | 0.7995 |
194
+ | 0.0507 | 19.7059 | 2680 | 0.0596 | 0.5631 | 0.8460 | 0.9545 | nan | 0.9844 | 0.7076 | 0.0 | 0.9835 | 0.7057 |
195
+ | 0.0255 | 19.8529 | 2700 | 0.0573 | 0.5763 | 0.8669 | 0.9596 | nan | 0.9852 | 0.7486 | 0.0 | 0.9845 | 0.7444 |
196
+ | 0.024 | 20.0 | 2720 | 0.0499 | 0.5929 | 0.8923 | 0.9664 | nan | 0.9868 | 0.7978 | 0.0 | 0.9861 | 0.7924 |
197
+ | 0.0402 | 20.1471 | 2740 | 0.0501 | 0.5899 | 0.8877 | 0.9647 | nan | 0.9859 | 0.7896 | 0.0 | 0.9853 | 0.7844 |
198
+ | 0.0329 | 20.2941 | 2760 | 0.0604 | 0.5815 | 0.8749 | 0.9577 | nan | 0.9805 | 0.7694 | 0.0 | 0.9799 | 0.7648 |
199
+ | 0.0127 | 20.4412 | 2780 | 0.0598 | 0.5723 | 0.8605 | 0.9564 | nan | 0.9828 | 0.7381 | 0.0 | 0.9821 | 0.7349 |
200
+ | 0.0292 | 20.5882 | 2800 | 0.0554 | 0.5729 | 0.8612 | 0.9592 | nan | 0.9862 | 0.7362 | 0.0 | 0.9856 | 0.7331 |
201
+ | 0.0297 | 20.7353 | 2820 | 0.0503 | 0.5907 | 0.8883 | 0.9646 | nan | 0.9857 | 0.7909 | 0.0 | 0.9852 | 0.7867 |
202
+ | 0.0328 | 20.8824 | 2840 | 0.0545 | 0.5903 | 0.8882 | 0.9594 | nan | 0.9791 | 0.7972 | 0.0 | 0.9784 | 0.7925 |
203
+ | 0.0204 | 21.0294 | 2860 | 0.0526 | 0.5779 | 0.8692 | 0.9618 | nan | 0.9873 | 0.7510 | 0.0 | 0.9861 | 0.7476 |
204
+ | 0.028 | 21.1765 | 2880 | 0.0513 | 0.5883 | 0.8849 | 0.9647 | nan | 0.9867 | 0.7830 | 0.0 | 0.9858 | 0.7791 |
205
+ | 0.0291 | 21.3235 | 2900 | 0.0562 | 0.5807 | 0.8739 | 0.9584 | nan | 0.9816 | 0.7661 | 0.0 | 0.9806 | 0.7616 |
206
+ | 0.0243 | 21.4706 | 2920 | 0.0504 | 0.6003 | 0.9034 | 0.9679 | nan | 0.9857 | 0.8210 | 0.0 | 0.9845 | 0.8164 |
207
+ | 0.0188 | 21.6176 | 2940 | 0.0715 | 0.5854 | 0.8802 | 0.9539 | nan | 0.9742 | 0.7863 | 0.0 | 0.9733 | 0.7829 |
208
+ | 0.0223 | 21.7647 | 2960 | 0.0650 | 0.5811 | 0.8737 | 0.9523 | nan | 0.9739 | 0.7734 | 0.0 | 0.9730 | 0.7702 |
209
+ | 0.0342 | 21.9118 | 2980 | 0.0571 | 0.5743 | 0.8637 | 0.9566 | nan | 0.9823 | 0.7451 | 0.0 | 0.9809 | 0.7421 |
210
+ | 0.0895 | 22.0588 | 3000 | 0.0720 | 0.5645 | 0.8481 | 0.9487 | nan | 0.9764 | 0.7199 | 0.0 | 0.9756 | 0.7180 |
211
+ | 0.0297 | 22.2059 | 3020 | 0.0603 | 0.5843 | 0.8784 | 0.9579 | nan | 0.9798 | 0.7771 | 0.0 | 0.9790 | 0.7740 |
212
+ | 0.0858 | 22.3529 | 3040 | 0.0635 | 0.5829 | 0.8768 | 0.9577 | nan | 0.9801 | 0.7734 | 0.0 | 0.9784 | 0.7704 |
213
+ | 0.0269 | 22.5 | 3060 | 0.0568 | 0.5866 | 0.8825 | 0.9586 | nan | 0.9796 | 0.7854 | 0.0 | 0.9784 | 0.7814 |
214
+ | 0.0224 | 22.6471 | 3080 | 0.0530 | 0.5842 | 0.8789 | 0.9624 | nan | 0.9855 | 0.7723 | 0.0 | 0.9839 | 0.7688 |
215
+ | 0.0296 | 22.7941 | 3100 | 0.0534 | 0.5915 | 0.8900 | 0.9613 | nan | 0.9810 | 0.7990 | 0.0 | 0.9799 | 0.7945 |
216
+ | 0.0306 | 22.9412 | 3120 | 0.0476 | 0.5988 | 0.9013 | 0.9696 | nan | 0.9884 | 0.8143 | 0.0 | 0.9873 | 0.8090 |
217
+ | 0.0259 | 23.0882 | 3140 | 0.0511 | 0.5994 | 0.9025 | 0.9661 | nan | 0.9836 | 0.8213 | 0.0 | 0.9830 | 0.8152 |
218
+ | 0.028 | 23.2353 | 3160 | 0.0508 | 0.5919 | 0.8905 | 0.9651 | nan | 0.9857 | 0.7953 | 0.0 | 0.9850 | 0.7907 |
219
+ | 0.0326 | 23.3824 | 3180 | 0.0555 | 0.5929 | 0.8925 | 0.9613 | nan | 0.9802 | 0.8048 | 0.0 | 0.9794 | 0.7991 |
220
+ | 0.019 | 23.5294 | 3200 | 0.0546 | 0.5804 | 0.8728 | 0.9610 | nan | 0.9853 | 0.7603 | 0.0 | 0.9838 | 0.7574 |
221
+ | 0.0246 | 23.6765 | 3220 | 0.0542 | 0.5824 | 0.8765 | 0.9619 | nan | 0.9854 | 0.7675 | 0.0 | 0.9829 | 0.7643 |
222
+ | 0.0591 | 23.8235 | 3240 | 0.0550 | 0.5854 | 0.8810 | 0.9618 | nan | 0.9841 | 0.7780 | 0.0 | 0.9821 | 0.7740 |
223
+ | 0.0485 | 23.9706 | 3260 | 0.0589 | 0.5767 | 0.8674 | 0.9570 | nan | 0.9817 | 0.7531 | 0.0 | 0.9802 | 0.7499 |
224
+ | 0.0206 | 24.1176 | 3280 | 0.0556 | 0.5847 | 0.8791 | 0.9614 | nan | 0.9841 | 0.7740 | 0.0 | 0.9834 | 0.7707 |
225
+ | 0.0496 | 24.2647 | 3300 | 0.0708 | 0.5737 | 0.8620 | 0.9498 | nan | 0.9740 | 0.7501 | 0.0 | 0.9734 | 0.7478 |
226
+ | 0.0889 | 24.4118 | 3320 | 0.0699 | 0.5699 | 0.8561 | 0.9514 | nan | 0.9778 | 0.7344 | 0.0 | 0.9768 | 0.7327 |
227
+ | 0.0242 | 24.5588 | 3340 | 0.0711 | 0.5861 | 0.8812 | 0.9571 | nan | 0.9780 | 0.7845 | 0.0 | 0.9771 | 0.7812 |
228
+ | 0.0269 | 24.7059 | 3360 | 0.0720 | 0.5841 | 0.8782 | 0.9567 | nan | 0.9783 | 0.7782 | 0.0 | 0.9776 | 0.7747 |
229
+ | 0.0305 | 24.8529 | 3380 | 0.0780 | 0.5865 | 0.8819 | 0.9500 | nan | 0.9688 | 0.7949 | 0.0 | 0.9685 | 0.7910 |
230
+ | 0.0221 | 25.0 | 3400 | 0.0617 | 0.5928 | 0.8922 | 0.9630 | nan | 0.9825 | 0.8019 | 0.0 | 0.9805 | 0.7978 |
231
+ | 0.0359 | 25.1471 | 3420 | 0.0685 | 0.5810 | 0.8744 | 0.9580 | nan | 0.9810 | 0.7677 | 0.0 | 0.9783 | 0.7647 |
232
+ | 0.0159 | 25.2941 | 3440 | 0.0776 | 0.5809 | 0.8734 | 0.9518 | nan | 0.9735 | 0.7734 | 0.0 | 0.9731 | 0.7696 |
233
+ | 0.0169 | 25.4412 | 3460 | 0.0664 | 0.5859 | 0.8808 | 0.9565 | nan | 0.9774 | 0.7842 | 0.0 | 0.9770 | 0.7807 |
234
+ | 0.024 | 25.5882 | 3480 | 0.0614 | 0.5875 | 0.8834 | 0.9602 | nan | 0.9814 | 0.7854 | 0.0 | 0.9806 | 0.7819 |
235
+ | 0.0311 | 25.7353 | 3500 | 0.0674 | 0.5893 | 0.8862 | 0.9575 | nan | 0.9772 | 0.7953 | 0.0 | 0.9765 | 0.7913 |
236
+ | 0.0147 | 25.8824 | 3520 | 0.0689 | 0.5783 | 0.8693 | 0.9544 | nan | 0.9778 | 0.7608 | 0.0 | 0.9770 | 0.7581 |
237
+ | 0.0226 | 26.0294 | 3540 | 0.0654 | 0.5825 | 0.8761 | 0.9575 | nan | 0.9799 | 0.7722 | 0.0 | 0.9790 | 0.7685 |
238
+ | 0.0252 | 26.1765 | 3560 | 0.0608 | 0.5775 | 0.8683 | 0.9571 | nan | 0.9816 | 0.7551 | 0.0 | 0.9807 | 0.7518 |
239
+ | 0.0339 | 26.3235 | 3580 | 0.0617 | 0.5821 | 0.8755 | 0.9593 | nan | 0.9824 | 0.7687 | 0.0 | 0.9810 | 0.7652 |
240
+ | 0.0368 | 26.4706 | 3600 | 0.0659 | 0.5829 | 0.8765 | 0.9566 | nan | 0.9786 | 0.7745 | 0.0 | 0.9781 | 0.7705 |
241
+ | 0.0144 | 26.6176 | 3620 | 0.0694 | 0.5827 | 0.8759 | 0.9542 | nan | 0.9758 | 0.7759 | 0.0 | 0.9752 | 0.7729 |
242
+ | 0.0432 | 26.7647 | 3640 | 0.0625 | 0.5901 | 0.8877 | 0.9598 | nan | 0.9798 | 0.7956 | 0.0 | 0.9789 | 0.7914 |
243
+ | 0.0204 | 26.9118 | 3660 | 0.0662 | 0.5797 | 0.8717 | 0.9569 | nan | 0.9803 | 0.7631 | 0.0 | 0.9797 | 0.7595 |
244
+ | 0.0102 | 27.0588 | 3680 | 0.0605 | 0.5917 | 0.8905 | 0.9603 | nan | 0.9796 | 0.8014 | 0.0 | 0.9789 | 0.7963 |
245
+ | 0.0209 | 27.2059 | 3700 | 0.0642 | 0.5810 | 0.8738 | 0.9586 | nan | 0.9820 | 0.7655 | 0.0 | 0.9808 | 0.7622 |
246
+ | 0.023 | 27.3529 | 3720 | 0.0657 | 0.5893 | 0.8867 | 0.9578 | nan | 0.9774 | 0.7961 | 0.0 | 0.9770 | 0.7909 |
247
+ | 0.0192 | 27.5 | 3740 | 0.0671 | 0.5856 | 0.8808 | 0.9586 | nan | 0.9800 | 0.7816 | 0.0 | 0.9793 | 0.7777 |
248
+ | 0.0162 | 27.6471 | 3760 | 0.0641 | 0.5748 | 0.8640 | 0.9545 | nan | 0.9795 | 0.7484 | 0.0 | 0.9787 | 0.7456 |
249
+ | 0.0554 | 27.7941 | 3780 | 0.0670 | 0.5755 | 0.8651 | 0.9547 | nan | 0.9794 | 0.7509 | 0.0 | 0.9787 | 0.7479 |
250
+ | 0.0211 | 27.9412 | 3800 | 0.0711 | 0.5890 | 0.8857 | 0.9564 | nan | 0.9759 | 0.7954 | 0.0 | 0.9751 | 0.7918 |
251
+ | 0.0388 | 28.0882 | 3820 | 0.0659 | 0.5687 | 0.8544 | 0.9530 | nan | 0.9803 | 0.7285 | 0.0 | 0.9796 | 0.7264 |
252
+ | 0.0226 | 28.2353 | 3840 | 0.0609 | 0.5915 | 0.8895 | 0.9583 | nan | 0.9772 | 0.8019 | 0.0 | 0.9769 | 0.7975 |
253
+ | 0.0226 | 28.3824 | 3860 | 0.0598 | 0.5820 | 0.8751 | 0.9602 | nan | 0.9837 | 0.7664 | 0.0 | 0.9827 | 0.7632 |
254
+ | 0.0165 | 28.5294 | 3880 | 0.0553 | 0.5863 | 0.8817 | 0.9628 | nan | 0.9851 | 0.7783 | 0.0 | 0.9838 | 0.7750 |
255
+ | 0.0304 | 28.6765 | 3900 | 0.0564 | 0.5836 | 0.8774 | 0.9602 | nan | 0.9830 | 0.7719 | 0.0 | 0.9823 | 0.7686 |
256
+ | 0.0144 | 28.8235 | 3920 | 0.0546 | 0.5827 | 0.8761 | 0.9635 | nan | 0.9876 | 0.7645 | 0.0 | 0.9868 | 0.7612 |
257
+ | 0.0073 | 28.9706 | 3940 | 0.0546 | 0.5842 | 0.8787 | 0.9611 | nan | 0.9839 | 0.7735 | 0.0 | 0.9829 | 0.7698 |
258
+ | 0.0162 | 29.1176 | 3960 | 0.0530 | 0.5942 | 0.8937 | 0.9630 | nan | 0.9821 | 0.8053 | 0.0 | 0.9816 | 0.8009 |
259
+ | 0.0194 | 29.2647 | 3980 | 0.0550 | 0.5859 | 0.8807 | 0.9617 | nan | 0.9841 | 0.7772 | 0.0 | 0.9834 | 0.7743 |
260
+ | 0.0132 | 29.4118 | 4000 | 0.0549 | 0.5824 | 0.8753 | 0.9609 | nan | 0.9845 | 0.7661 | 0.0 | 0.9839 | 0.7633 |
261
+ | 0.0708 | 29.5588 | 4020 | 0.0643 | 0.5827 | 0.8760 | 0.9558 | nan | 0.9778 | 0.7741 | 0.0 | 0.9772 | 0.7709 |
262
+ | 0.0389 | 29.7059 | 4040 | 0.0658 | 0.5787 | 0.8701 | 0.9558 | nan | 0.9794 | 0.7607 | 0.0 | 0.9786 | 0.7575 |
263
+ | 0.0176 | 29.8529 | 4060 | 0.0657 | 0.5874 | 0.8837 | 0.9572 | nan | 0.9775 | 0.7899 | 0.0 | 0.9770 | 0.7853 |
264
+ | 0.0198 | 30.0 | 4080 | 0.0606 | 0.5891 | 0.8862 | 0.9622 | nan | 0.9831 | 0.7892 | 0.0 | 0.9824 | 0.7849 |
265
+ | 0.0362 | 30.1471 | 4100 | 0.0573 | 0.5834 | 0.8771 | 0.9585 | nan | 0.9809 | 0.7733 | 0.0 | 0.9805 | 0.7699 |
266
+ | 0.0212 | 30.2941 | 4120 | 0.0596 | 0.5892 | 0.8857 | 0.9611 | nan | 0.9819 | 0.7896 | 0.0 | 0.9813 | 0.7863 |
267
+ | 0.0184 | 30.4412 | 4140 | 0.0646 | 0.5782 | 0.8690 | 0.9571 | nan | 0.9814 | 0.7567 | 0.0 | 0.9808 | 0.7539 |
268
+ | 0.0345 | 30.5882 | 4160 | 0.0595 | 0.5894 | 0.8865 | 0.9614 | nan | 0.9820 | 0.7909 | 0.0 | 0.9815 | 0.7867 |
269
+ | 0.0183 | 30.7353 | 4180 | 0.0580 | 0.5888 | 0.8851 | 0.9610 | nan | 0.9819 | 0.7884 | 0.0 | 0.9813 | 0.7851 |
270
+ | 0.0131 | 30.8824 | 4200 | 0.0620 | 0.5816 | 0.8745 | 0.9582 | nan | 0.9812 | 0.7678 | 0.0 | 0.9807 | 0.7643 |
271
+ | 0.0174 | 31.0294 | 4220 | 0.0653 | 0.5867 | 0.8823 | 0.9585 | nan | 0.9796 | 0.7850 | 0.0 | 0.9788 | 0.7813 |
272
+ | 0.0218 | 31.1765 | 4240 | 0.0706 | 0.5766 | 0.8667 | 0.9543 | nan | 0.9785 | 0.7548 | 0.0 | 0.9778 | 0.7520 |
273
+ | 0.0362 | 31.3235 | 4260 | 0.0675 | 0.5810 | 0.8735 | 0.9566 | nan | 0.9795 | 0.7675 | 0.0 | 0.9788 | 0.7643 |
274
+ | 0.0236 | 31.4706 | 4280 | 0.0620 | 0.5917 | 0.8901 | 0.9598 | nan | 0.9790 | 0.8012 | 0.0 | 0.9785 | 0.7968 |
275
+ | 0.0402 | 31.6176 | 4300 | 0.0599 | 0.5872 | 0.8829 | 0.9604 | nan | 0.9818 | 0.7839 | 0.0 | 0.9809 | 0.7806 |
276
+ | 0.016 | 31.7647 | 4320 | 0.0576 | 0.5875 | 0.8832 | 0.9617 | nan | 0.9833 | 0.7831 | 0.0 | 0.9825 | 0.7800 |
277
+ | 0.0331 | 31.9118 | 4340 | 0.0600 | 0.5816 | 0.8740 | 0.9575 | nan | 0.9805 | 0.7675 | 0.0 | 0.9799 | 0.7649 |
278
+ | 0.0332 | 32.0588 | 4360 | 0.0577 | 0.5841 | 0.8781 | 0.9605 | nan | 0.9832 | 0.7729 | 0.0 | 0.9825 | 0.7699 |
279
+ | 0.0414 | 32.2059 | 4380 | 0.0588 | 0.5847 | 0.8792 | 0.9622 | nan | 0.9851 | 0.7732 | 0.0 | 0.9840 | 0.7700 |
280
+ | 0.0117 | 32.3529 | 4400 | 0.0626 | 0.5847 | 0.8790 | 0.9588 | nan | 0.9808 | 0.7772 | 0.0 | 0.9802 | 0.7740 |
281
+ | 0.0156 | 32.5 | 4420 | 0.0584 | 0.5915 | 0.8893 | 0.9623 | nan | 0.9824 | 0.7963 | 0.0 | 0.9817 | 0.7928 |
282
+ | 0.0137 | 32.6471 | 4440 | 0.0583 | 0.5876 | 0.8833 | 0.9607 | nan | 0.9820 | 0.7846 | 0.0 | 0.9814 | 0.7814 |
283
+ | 0.0309 | 32.7941 | 4460 | 0.0584 | 0.5902 | 0.8874 | 0.9631 | nan | 0.9840 | 0.7909 | 0.0 | 0.9832 | 0.7875 |
284
+ | 0.0314 | 32.9412 | 4480 | 0.0712 | 0.5742 | 0.8630 | 0.9524 | nan | 0.9770 | 0.7489 | 0.0 | 0.9764 | 0.7463 |
285
+ | 0.0264 | 33.0882 | 4500 | 0.0676 | 0.5800 | 0.8718 | 0.9549 | nan | 0.9778 | 0.7658 | 0.0 | 0.9772 | 0.7628 |
286
+ | 0.0259 | 33.2353 | 4520 | 0.0643 | 0.5811 | 0.8735 | 0.9571 | nan | 0.9802 | 0.7668 | 0.0 | 0.9794 | 0.7639 |
287
+ | 0.0108 | 33.3824 | 4540 | 0.0614 | 0.5784 | 0.8693 | 0.9580 | nan | 0.9825 | 0.7560 | 0.0 | 0.9816 | 0.7536 |
288
+ | 0.0224 | 33.5294 | 4560 | 0.0594 | 0.5879 | 0.8839 | 0.9611 | nan | 0.9824 | 0.7854 | 0.0 | 0.9816 | 0.7822 |
289
+ | 0.0335 | 33.6765 | 4580 | 0.0584 | 0.5836 | 0.8772 | 0.9595 | nan | 0.9822 | 0.7721 | 0.0 | 0.9816 | 0.7692 |
290
+ | 0.0219 | 33.8235 | 4600 | 0.0613 | 0.5811 | 0.8733 | 0.9601 | nan | 0.9840 | 0.7627 | 0.0 | 0.9832 | 0.7600 |
291
+ | 0.0842 | 33.9706 | 4620 | 0.0622 | 0.5814 | 0.8741 | 0.9599 | nan | 0.9835 | 0.7646 | 0.0 | 0.9823 | 0.7620 |
292
+ | 0.0172 | 34.1176 | 4640 | 0.0720 | 0.5763 | 0.8662 | 0.9549 | nan | 0.9794 | 0.7529 | 0.0 | 0.9785 | 0.7505 |
293
+ | 0.0446 | 34.2647 | 4660 | 0.0714 | 0.5785 | 0.8694 | 0.9554 | nan | 0.9791 | 0.7597 | 0.0 | 0.9783 | 0.7571 |
294
+ | 0.014 | 34.4118 | 4680 | 0.0712 | 0.5806 | 0.8729 | 0.9544 | nan | 0.9769 | 0.7689 | 0.0 | 0.9764 | 0.7654 |
295
+ | 0.0443 | 34.5588 | 4700 | 0.0609 | 0.5917 | 0.8897 | 0.9605 | nan | 0.9800 | 0.7993 | 0.0 | 0.9794 | 0.7957 |
296
+ | 0.0211 | 34.7059 | 4720 | 0.0702 | 0.5826 | 0.8754 | 0.9559 | nan | 0.9780 | 0.7728 | 0.0 | 0.9774 | 0.7704 |
297
+ | 0.0135 | 34.8529 | 4740 | 0.0705 | 0.5840 | 0.8776 | 0.9560 | nan | 0.9776 | 0.7777 | 0.0 | 0.9771 | 0.7748 |
298
+ | 0.028 | 35.0 | 4760 | 0.0691 | 0.5873 | 0.8828 | 0.9582 | nan | 0.9790 | 0.7866 | 0.0 | 0.9784 | 0.7834 |
299
+ | 0.0261 | 35.1471 | 4780 | 0.0682 | 0.5837 | 0.8774 | 0.9570 | nan | 0.9790 | 0.7758 | 0.0 | 0.9785 | 0.7727 |
300
+ | 0.0213 | 35.2941 | 4800 | 0.0695 | 0.5848 | 0.8790 | 0.9564 | nan | 0.9777 | 0.7802 | 0.0 | 0.9772 | 0.7771 |
301
+ | 0.0187 | 35.4412 | 4820 | 0.0685 | 0.5765 | 0.8661 | 0.9547 | nan | 0.9792 | 0.7531 | 0.0 | 0.9786 | 0.7508 |
302
+ | 0.0159 | 35.5882 | 4840 | 0.0645 | 0.5767 | 0.8666 | 0.9568 | nan | 0.9816 | 0.7515 | 0.0 | 0.9811 | 0.7490 |
303
+ | 0.0088 | 35.7353 | 4860 | 0.0603 | 0.5940 | 0.8930 | 0.9619 | nan | 0.9808 | 0.8052 | 0.0 | 0.9803 | 0.8016 |
304
+ | 0.0201 | 35.8824 | 4880 | 0.0633 | 0.5880 | 0.8838 | 0.9596 | nan | 0.9806 | 0.7870 | 0.0 | 0.9800 | 0.7840 |
305
+ | 0.0413 | 36.0294 | 4900 | 0.0714 | 0.5880 | 0.8840 | 0.9565 | nan | 0.9765 | 0.7914 | 0.0 | 0.9759 | 0.7880 |
306
+ | 0.034 | 36.1765 | 4920 | 0.0748 | 0.5799 | 0.8715 | 0.9541 | nan | 0.9769 | 0.7662 | 0.0 | 0.9763 | 0.7633 |
307
+ | 0.0286 | 36.3235 | 4940 | 0.0752 | 0.5727 | 0.8603 | 0.9518 | nan | 0.9771 | 0.7436 | 0.0 | 0.9766 | 0.7415 |
308
+ | 0.0144 | 36.4706 | 4960 | 0.0651 | 0.5883 | 0.8844 | 0.9593 | nan | 0.9799 | 0.7889 | 0.0 | 0.9794 | 0.7854 |
309
+ | 0.0217 | 36.6176 | 4980 | 0.0629 | 0.5812 | 0.8736 | 0.9572 | nan | 0.9802 | 0.7670 | 0.0 | 0.9798 | 0.7640 |
310
+ | 0.017 | 36.7647 | 5000 | 0.0696 | 0.5771 | 0.8674 | 0.9546 | nan | 0.9786 | 0.7561 | 0.0 | 0.9782 | 0.7532 |
311
+ | 0.014 | 36.9118 | 5020 | 0.0579 | 0.5929 | 0.8916 | 0.9640 | nan | 0.9840 | 0.7991 | 0.0 | 0.9832 | 0.7955 |
312
+ | 0.0709 | 37.0588 | 5040 | 0.0636 | 0.5789 | 0.8698 | 0.9577 | nan | 0.9819 | 0.7578 | 0.0 | 0.9813 | 0.7553 |
313
+ | 0.0145 | 37.2059 | 5060 | 0.0602 | 0.5925 | 0.8907 | 0.9612 | nan | 0.9807 | 0.8008 | 0.0 | 0.9801 | 0.7974 |
314
+ | 0.0149 | 37.3529 | 5080 | 0.0663 | 0.5889 | 0.8853 | 0.9591 | nan | 0.9794 | 0.7912 | 0.0 | 0.9788 | 0.7879 |
315
+ | 0.0143 | 37.5 | 5100 | 0.0694 | 0.5793 | 0.8703 | 0.9556 | nan | 0.9791 | 0.7616 | 0.0 | 0.9785 | 0.7594 |
316
+ | 0.0364 | 37.6471 | 5120 | 0.0642 | 0.5824 | 0.8752 | 0.9581 | nan | 0.9809 | 0.7695 | 0.0 | 0.9804 | 0.7668 |
317
+ | 0.0196 | 37.7941 | 5140 | 0.0644 | 0.5822 | 0.8748 | 0.9584 | nan | 0.9814 | 0.7682 | 0.0 | 0.9808 | 0.7658 |
318
+ | 0.0674 | 37.9412 | 5160 | 0.0650 | 0.5834 | 0.8767 | 0.9574 | nan | 0.9796 | 0.7738 | 0.0 | 0.9790 | 0.7711 |
319
+ | 0.0204 | 38.0882 | 5180 | 0.0643 | 0.5880 | 0.8838 | 0.9594 | nan | 0.9803 | 0.7872 | 0.0 | 0.9797 | 0.7843 |
320
+ | 0.0388 | 38.2353 | 5200 | 0.0669 | 0.5835 | 0.8770 | 0.9586 | nan | 0.9812 | 0.7728 | 0.0 | 0.9805 | 0.7701 |
321
+ | 0.0115 | 38.3824 | 5220 | 0.0648 | 0.5853 | 0.8797 | 0.9595 | nan | 0.9815 | 0.7779 | 0.0 | 0.9809 | 0.7750 |
322
+ | 0.0295 | 38.5294 | 5240 | 0.0666 | 0.5800 | 0.8716 | 0.9564 | nan | 0.9798 | 0.7633 | 0.0 | 0.9792 | 0.7608 |
323
+ | 0.0138 | 38.6765 | 5260 | 0.0632 | 0.5823 | 0.8750 | 0.9591 | nan | 0.9823 | 0.7678 | 0.0 | 0.9817 | 0.7651 |
324
+ | 0.0297 | 38.8235 | 5280 | 0.0635 | 0.5819 | 0.8743 | 0.9584 | nan | 0.9816 | 0.7671 | 0.0 | 0.9810 | 0.7647 |
325
+ | 0.0218 | 38.9706 | 5300 | 0.0635 | 0.5855 | 0.8800 | 0.9590 | nan | 0.9808 | 0.7792 | 0.0 | 0.9802 | 0.7763 |
326
+ | 0.0305 | 39.1176 | 5320 | 0.0665 | 0.5807 | 0.8726 | 0.9573 | nan | 0.9806 | 0.7646 | 0.0 | 0.9801 | 0.7620 |
327
+ | 0.0333 | 39.2647 | 5340 | 0.0683 | 0.5807 | 0.8728 | 0.9568 | nan | 0.9800 | 0.7656 | 0.0 | 0.9794 | 0.7628 |
328
+ | 0.0143 | 39.4118 | 5360 | 0.0689 | 0.5819 | 0.8746 | 0.9564 | nan | 0.9790 | 0.7702 | 0.0 | 0.9784 | 0.7672 |
329
+ | 0.0258 | 39.5588 | 5380 | 0.0719 | 0.5827 | 0.8757 | 0.9549 | nan | 0.9768 | 0.7747 | 0.0 | 0.9762 | 0.7718 |
330
+ | 0.0238 | 39.7059 | 5400 | 0.0670 | 0.5827 | 0.8757 | 0.9568 | nan | 0.9792 | 0.7721 | 0.0 | 0.9787 | 0.7693 |
331
+ | 0.0328 | 39.8529 | 5420 | 0.0662 | 0.5811 | 0.8733 | 0.9565 | nan | 0.9794 | 0.7672 | 0.0 | 0.9789 | 0.7645 |
332
+ | 0.0299 | 40.0 | 5440 | 0.0660 | 0.5870 | 0.8823 | 0.9582 | nan | 0.9792 | 0.7854 | 0.0 | 0.9787 | 0.7823 |
333
+ | 0.0134 | 40.1471 | 5460 | 0.0678 | 0.5813 | 0.8735 | 0.9568 | nan | 0.9798 | 0.7673 | 0.0 | 0.9791 | 0.7649 |
334
+ | 0.0363 | 40.2941 | 5480 | 0.0669 | 0.5863 | 0.8812 | 0.9587 | nan | 0.9801 | 0.7824 | 0.0 | 0.9795 | 0.7794 |
335
+ | 0.017 | 40.4412 | 5500 | 0.0656 | 0.5843 | 0.8781 | 0.9589 | nan | 0.9812 | 0.7751 | 0.0 | 0.9806 | 0.7723 |
336
+ | 0.0228 | 40.5882 | 5520 | 0.0670 | 0.5775 | 0.8676 | 0.9577 | nan | 0.9826 | 0.7526 | 0.0 | 0.9820 | 0.7504 |
337
+ | 0.0084 | 40.7353 | 5540 | 0.0616 | 0.5830 | 0.8761 | 0.9592 | nan | 0.9821 | 0.7701 | 0.0 | 0.9815 | 0.7675 |
338
+ | 0.0289 | 40.8824 | 5560 | 0.0611 | 0.5838 | 0.8774 | 0.9597 | nan | 0.9824 | 0.7724 | 0.0 | 0.9818 | 0.7697 |
339
+ | 0.0235 | 41.0294 | 5580 | 0.0572 | 0.5883 | 0.8844 | 0.9625 | nan | 0.9840 | 0.7847 | 0.0 | 0.9835 | 0.7815 |
340
+ | 0.0097 | 41.1765 | 5600 | 0.0594 | 0.5834 | 0.8768 | 0.9605 | nan | 0.9835 | 0.7701 | 0.0 | 0.9830 | 0.7672 |
341
+ | 0.0121 | 41.3235 | 5620 | 0.0589 | 0.5851 | 0.8794 | 0.9611 | nan | 0.9836 | 0.7752 | 0.0 | 0.9831 | 0.7722 |
342
+ | 0.0273 | 41.4706 | 5640 | 0.0571 | 0.5859 | 0.8805 | 0.9619 | nan | 0.9843 | 0.7767 | 0.0 | 0.9838 | 0.7740 |
343
+ | 0.0241 | 41.6176 | 5660 | 0.0564 | 0.5866 | 0.8816 | 0.9627 | nan | 0.9851 | 0.7782 | 0.0 | 0.9846 | 0.7753 |
344
+ | 0.0128 | 41.7647 | 5680 | 0.0612 | 0.5832 | 0.8764 | 0.9601 | nan | 0.9831 | 0.7696 | 0.0 | 0.9826 | 0.7669 |
345
+ | 0.0126 | 41.9118 | 5700 | 0.0645 | 0.5808 | 0.8728 | 0.9573 | nan | 0.9806 | 0.7649 | 0.0 | 0.9801 | 0.7622 |
346
+ | 0.0206 | 42.0588 | 5720 | 0.0658 | 0.5809 | 0.8729 | 0.9569 | nan | 0.9801 | 0.7658 | 0.0 | 0.9795 | 0.7632 |
347
+ | 0.0219 | 42.2059 | 5740 | 0.0656 | 0.5823 | 0.8752 | 0.9587 | nan | 0.9817 | 0.7687 | 0.0 | 0.9812 | 0.7659 |
348
+ | 0.0176 | 42.3529 | 5760 | 0.0645 | 0.5850 | 0.8793 | 0.9602 | nan | 0.9825 | 0.7761 | 0.0 | 0.9819 | 0.7731 |
349
+ | 0.0172 | 42.5 | 5780 | 0.0606 | 0.5886 | 0.8847 | 0.9604 | nan | 0.9813 | 0.7881 | 0.0 | 0.9807 | 0.7851 |
350
+ | 0.0315 | 42.6471 | 5800 | 0.0605 | 0.5878 | 0.8834 | 0.9616 | nan | 0.9831 | 0.7837 | 0.0 | 0.9825 | 0.7808 |
351
+ | 0.0183 | 42.7941 | 5820 | 0.0619 | 0.5836 | 0.8771 | 0.9597 | nan | 0.9825 | 0.7716 | 0.0 | 0.9819 | 0.7688 |
352
+ | 0.0245 | 42.9412 | 5840 | 0.0635 | 0.5857 | 0.8804 | 0.9600 | nan | 0.9819 | 0.7788 | 0.0 | 0.9814 | 0.7757 |
353
+ | 0.0237 | 43.0882 | 5860 | 0.0615 | 0.5850 | 0.8791 | 0.9609 | nan | 0.9834 | 0.7749 | 0.0 | 0.9829 | 0.7721 |
354
+ | 0.0118 | 43.2353 | 5880 | 0.0654 | 0.5837 | 0.8773 | 0.9582 | nan | 0.9806 | 0.7740 | 0.0 | 0.9801 | 0.7709 |
355
+ | 0.0224 | 43.3824 | 5900 | 0.0665 | 0.5801 | 0.8717 | 0.9577 | nan | 0.9814 | 0.7621 | 0.0 | 0.9809 | 0.7594 |
356
+ | 0.0203 | 43.5294 | 5920 | 0.0632 | 0.5877 | 0.8836 | 0.9605 | nan | 0.9818 | 0.7853 | 0.0 | 0.9813 | 0.7819 |
357
+ | 0.0215 | 43.6765 | 5940 | 0.0654 | 0.5834 | 0.8767 | 0.9588 | nan | 0.9815 | 0.7719 | 0.0 | 0.9809 | 0.7691 |
358
+ | 0.0561 | 43.8235 | 5960 | 0.0647 | 0.5827 | 0.8757 | 0.9583 | nan | 0.9811 | 0.7704 | 0.0 | 0.9805 | 0.7677 |
359
+ | 0.019 | 43.9706 | 5980 | 0.0653 | 0.5877 | 0.8834 | 0.9592 | nan | 0.9800 | 0.7868 | 0.0 | 0.9795 | 0.7837 |
360
+ | 0.0207 | 44.1176 | 6000 | 0.0653 | 0.5847 | 0.8788 | 0.9597 | nan | 0.9820 | 0.7755 | 0.0 | 0.9813 | 0.7727 |
361
+ | 0.0207 | 44.2647 | 6020 | 0.0654 | 0.5846 | 0.8786 | 0.9596 | nan | 0.9819 | 0.7753 | 0.0 | 0.9812 | 0.7726 |
362
+ | 0.018 | 44.4118 | 6040 | 0.0658 | 0.5852 | 0.8795 | 0.9587 | nan | 0.9805 | 0.7785 | 0.0 | 0.9799 | 0.7756 |
363
+ | 0.0148 | 44.5588 | 6060 | 0.0690 | 0.5838 | 0.8773 | 0.9570 | nan | 0.9789 | 0.7757 | 0.0 | 0.9785 | 0.7730 |
364
+ | 0.0217 | 44.7059 | 6080 | 0.0658 | 0.5852 | 0.8794 | 0.9583 | nan | 0.9801 | 0.7788 | 0.0 | 0.9795 | 0.7760 |
365
+ | 0.0239 | 44.8529 | 6100 | 0.0660 | 0.5834 | 0.8768 | 0.9574 | nan | 0.9796 | 0.7739 | 0.0 | 0.9792 | 0.7711 |
366
+ | 0.0094 | 45.0 | 6120 | 0.0675 | 0.5816 | 0.8739 | 0.9577 | nan | 0.9808 | 0.7670 | 0.0 | 0.9802 | 0.7646 |
367
+ | 0.0314 | 45.1471 | 6140 | 0.0656 | 0.5838 | 0.8772 | 0.9593 | nan | 0.9819 | 0.7726 | 0.0 | 0.9813 | 0.7701 |
368
+ | 0.0061 | 45.2941 | 6160 | 0.0669 | 0.5879 | 0.8836 | 0.9595 | nan | 0.9804 | 0.7867 | 0.0 | 0.9798 | 0.7838 |
369
+ | 0.0203 | 45.4412 | 6180 | 0.0673 | 0.5817 | 0.8741 | 0.9573 | nan | 0.9803 | 0.7680 | 0.0 | 0.9797 | 0.7655 |
370
+ | 0.0143 | 45.5882 | 6200 | 0.0682 | 0.5844 | 0.8782 | 0.9582 | nan | 0.9803 | 0.7762 | 0.0 | 0.9797 | 0.7735 |
371
+ | 0.0101 | 45.7353 | 6220 | 0.0667 | 0.5867 | 0.8818 | 0.9586 | nan | 0.9798 | 0.7838 | 0.0 | 0.9793 | 0.7807 |
372
+ | 0.0245 | 45.8824 | 6240 | 0.0659 | 0.5859 | 0.8805 | 0.9585 | nan | 0.9800 | 0.7809 | 0.0 | 0.9795 | 0.7780 |
373
+ | 0.0157 | 46.0294 | 6260 | 0.0654 | 0.5801 | 0.8715 | 0.9579 | nan | 0.9817 | 0.7612 | 0.0 | 0.9812 | 0.7590 |
374
+ | 0.0208 | 46.1765 | 6280 | 0.0634 | 0.5907 | 0.8878 | 0.9608 | nan | 0.9809 | 0.7947 | 0.0 | 0.9804 | 0.7916 |
375
+ | 0.0344 | 46.3235 | 6300 | 0.0657 | 0.5838 | 0.8773 | 0.9579 | nan | 0.9801 | 0.7746 | 0.0 | 0.9795 | 0.7720 |
376
+ | 0.0204 | 46.4706 | 6320 | 0.0655 | 0.5824 | 0.8752 | 0.9585 | nan | 0.9814 | 0.7689 | 0.0 | 0.9808 | 0.7665 |
377
+ | 0.0066 | 46.6176 | 6340 | 0.0664 | 0.5795 | 0.8707 | 0.9573 | nan | 0.9812 | 0.7602 | 0.0 | 0.9806 | 0.7579 |
378
+ | 0.0159 | 46.7647 | 6360 | 0.0640 | 0.5865 | 0.8815 | 0.9596 | nan | 0.9812 | 0.7819 | 0.0 | 0.9806 | 0.7789 |
379
+ | 0.0325 | 46.9118 | 6380 | 0.0647 | 0.5818 | 0.8743 | 0.9587 | nan | 0.9819 | 0.7667 | 0.0 | 0.9812 | 0.7642 |
380
+ | 0.0277 | 47.0588 | 6400 | 0.0646 | 0.5840 | 0.8777 | 0.9585 | nan | 0.9808 | 0.7745 | 0.0 | 0.9802 | 0.7718 |
381
+ | 0.0201 | 47.2059 | 6420 | 0.0648 | 0.5861 | 0.8810 | 0.9594 | nan | 0.9811 | 0.7809 | 0.0 | 0.9805 | 0.7779 |
382
+ | 0.0167 | 47.3529 | 6440 | 0.0664 | 0.5858 | 0.8805 | 0.9583 | nan | 0.9798 | 0.7812 | 0.0 | 0.9793 | 0.7780 |
383
+ | 0.0245 | 47.5 | 6460 | 0.0668 | 0.5852 | 0.8796 | 0.9582 | nan | 0.9799 | 0.7793 | 0.0 | 0.9793 | 0.7763 |
384
+ | 0.025 | 47.6471 | 6480 | 0.0655 | 0.5847 | 0.8789 | 0.9576 | nan | 0.9793 | 0.7785 | 0.0 | 0.9788 | 0.7754 |
385
+ | 0.0248 | 47.7941 | 6500 | 0.0642 | 0.5863 | 0.8813 | 0.9592 | nan | 0.9807 | 0.7819 | 0.0 | 0.9802 | 0.7787 |
386
+ | 0.0212 | 47.9412 | 6520 | 0.0632 | 0.5836 | 0.8771 | 0.9589 | nan | 0.9815 | 0.7728 | 0.0 | 0.9809 | 0.7700 |
387
+ | 0.0184 | 48.0882 | 6540 | 0.0635 | 0.5899 | 0.8869 | 0.9607 | nan | 0.9810 | 0.7928 | 0.0 | 0.9804 | 0.7893 |
388
+ | 0.0288 | 48.2353 | 6560 | 0.0642 | 0.5885 | 0.8847 | 0.9603 | nan | 0.9811 | 0.7883 | 0.0 | 0.9805 | 0.7851 |
389
+ | 0.0163 | 48.3824 | 6580 | 0.0650 | 0.5872 | 0.8827 | 0.9598 | nan | 0.9811 | 0.7843 | 0.0 | 0.9805 | 0.7813 |
390
+ | 0.0109 | 48.5294 | 6600 | 0.0680 | 0.5738 | 0.8619 | 0.9549 | nan | 0.9805 | 0.7433 | 0.0 | 0.9799 | 0.7414 |
391
+ | 0.0138 | 48.6765 | 6620 | 0.0659 | 0.5841 | 0.8779 | 0.9580 | nan | 0.9801 | 0.7756 | 0.0 | 0.9796 | 0.7728 |
392
+ | 0.0151 | 48.8235 | 6640 | 0.0646 | 0.5867 | 0.8818 | 0.9591 | nan | 0.9804 | 0.7832 | 0.0 | 0.9798 | 0.7802 |
393
+ | 0.0829 | 48.9706 | 6660 | 0.0648 | 0.5805 | 0.8722 | 0.9582 | nan | 0.9819 | 0.7625 | 0.0 | 0.9812 | 0.7602 |
394
+ | 0.0155 | 49.1176 | 6680 | 0.0635 | 0.5879 | 0.8836 | 0.9600 | nan | 0.9811 | 0.7862 | 0.0 | 0.9805 | 0.7832 |
395
+ | 0.0146 | 49.2647 | 6700 | 0.0645 | 0.5853 | 0.8796 | 0.9589 | nan | 0.9808 | 0.7785 | 0.0 | 0.9802 | 0.7757 |
396
+ | 0.0099 | 49.4118 | 6720 | 0.0659 | 0.5848 | 0.8790 | 0.9583 | nan | 0.9801 | 0.7778 | 0.0 | 0.9796 | 0.7749 |
397
+ | 0.0153 | 49.5588 | 6740 | 0.0646 | 0.5815 | 0.8738 | 0.9578 | nan | 0.9809 | 0.7666 | 0.0 | 0.9804 | 0.7642 |
398
+ | 0.0138 | 49.7059 | 6760 | 0.0643 | 0.5852 | 0.8795 | 0.9591 | nan | 0.9810 | 0.7781 | 0.0 | 0.9804 | 0.7753 |
399
+ | 0.0179 | 49.8529 | 6780 | 0.0656 | 0.5838 | 0.8773 | 0.9583 | nan | 0.9807 | 0.7740 | 0.0 | 0.9801 | 0.7714 |
400
+ | 0.0299 | 50.0 | 6800 | 0.0641 | 0.5842 | 0.8779 | 0.9589 | nan | 0.9812 | 0.7747 | 0.0 | 0.9806 | 0.7720 |
401
+
402
+
403
+ ### Framework versions
404
+
405
+ - Transformers 4.46.3
406
+ - Pytorch 2.5.1+cu121
407
+ - Datasets 3.1.0
408
+ - Tokenizers 0.20.3
config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b0",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 32,
26
+ 64,
27
+ 160,
28
+ 256
29
+ ],
30
+ "id2label": {
31
+ "0": "background",
32
+ "1": "ground",
33
+ "2": "pallet"
34
+ },
35
+ "image_size": 224,
36
+ "initializer_range": 0.02,
37
+ "label2id": {
38
+ "background": 0,
39
+ "ground": 1,
40
+ "pallet": 2
41
+ },
42
+ "layer_norm_eps": 1e-06,
43
+ "mlp_ratios": [
44
+ 4,
45
+ 4,
46
+ 4,
47
+ 4
48
+ ],
49
+ "model_type": "segformer",
50
+ "num_attention_heads": [
51
+ 1,
52
+ 2,
53
+ 5,
54
+ 8
55
+ ],
56
+ "num_channels": 3,
57
+ "num_encoder_blocks": 4,
58
+ "patch_sizes": [
59
+ 7,
60
+ 3,
61
+ 3,
62
+ 3
63
+ ],
64
+ "reshape_last_stage": true,
65
+ "semantic_loss_ignore_index": 255,
66
+ "sr_ratios": [
67
+ 8,
68
+ 4,
69
+ 2,
70
+ 1
71
+ ],
72
+ "strides": [
73
+ 4,
74
+ 2,
75
+ 2,
76
+ 2
77
+ ],
78
+ "torch_dtype": "float32",
79
+ "transformers_version": "4.46.3"
80
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdc128751e723830df7f83c70126e3e089ee137a17f306ce8cea07697db55021
3
+ size 14885804
runs/Dec09_13-06-41_df2476439474/events.out.tfevents.1733749636.df2476439474.1360.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e418920187b9e6ead34819e1ff82fdb6c0276f50d8fd1436d2c2c6b9f4b5ade
3
+ size 1707789
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8e79dd908bf4d40703132ee6eb75b5c5afa40ec84452818984be50ca9e451e9
3
+ size 5304