--- library_name: peft license: llama3.1 base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF tags: - generated_from_trainer datasets: - ugaoo/transformed_short_answer_dataset_prompt model-index: - name: out/transformed_short_answer_dataset_prompt_Nemotron results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ugaoo/transformed_short_answer_dataset_prompt type: alpaca val_set_size: 0 output_dir: ./out/transformed_short_answer_dataset_prompt_Nemotron sequence_len: 4000 sample_packing: true pad_to_sequence_len: true adapter: qlora lora_r: 256 lora_alpha: 512 lora_dropout: 0.05 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - up_proj - down_proj - gate_proj lora_modules_to_save: - embed_tokens - lm_head wandb_project: cosmosearch wandb_entity: wandb_watch: wandb_name: transformed_short_answer_dataset_prompt_Nemotron wandb_log_model: gradient_accumulation_steps: 3 micro_batch_size: 4 num_epochs: 6 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 5e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 6 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: save_total_limit: 6 special_tokens: pad_token: <|end_of_text|> ```

# out/transformed_short_answer_dataset_prompt_Nemotron This model is a fine-tuned version of [nvidia/Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) on the ugaoo/transformed_short_answer_dataset_prompt dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 3 - total_train_batch_size: 48 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 6.0 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.1