Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,256 @@
|
|
1 |
-
|
2 |
-
#metadata
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
1 |
+
---
|
2 |
+
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
|
3 |
+
# Doc / guide: https://huggingface.co/docs/hub/model-cards
|
4 |
+
{}
|
5 |
+
---
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
copy/paste/save as pix2pixinference.py
|
9 |
+
```
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
from torchvision.transforms import Compose, Resize, ToTensor, Normalize, ToPILImage
|
13 |
+
from torchvision.utils import save_image
|
14 |
+
from PIL import Image
|
15 |
+
import os
|
16 |
+
import io
|
17 |
+
from huggingface_hub import hf_hub_download
|
18 |
+
import sys
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
|
21 |
+
# Import the model architecture - assuming it's locally available
|
22 |
+
# If not, we'll need to define it here
|
23 |
+
try:
|
24 |
+
from modeling_pix2pix import GeneratorUNet
|
25 |
+
except ImportError:
|
26 |
+
print("Couldn't import model architecture, defining it here...")
|
27 |
+
# Define the UNet architecture as it appears in the original code
|
28 |
+
import torch.nn as nn
|
29 |
+
import torch.nn.functional as F
|
30 |
+
|
31 |
+
def weights_init_normal(m):
|
32 |
+
classname = m.__class__.__name__
|
33 |
+
if classname.find("Conv") != -1:
|
34 |
+
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
|
35 |
+
elif classname.find("BatchNorm2d") != -1:
|
36 |
+
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
|
37 |
+
torch.nn.init.constant_(m.bias.data, 0.0)
|
38 |
+
|
39 |
+
class UNetDown(nn.Module):
|
40 |
+
def __init__(self, in_size, out_size, normalize=True, dropout=0.0):
|
41 |
+
super(UNetDown, self).__init__()
|
42 |
+
layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, bias=False)]
|
43 |
+
if normalize:
|
44 |
+
layers.append(nn.InstanceNorm2d(out_size))
|
45 |
+
layers.append(nn.LeakyReLU(0.2))
|
46 |
+
if dropout:
|
47 |
+
layers.append(nn.Dropout(dropout))
|
48 |
+
self.model = nn.Sequential(*layers)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
return self.model(x)
|
52 |
+
|
53 |
+
class UNetUp(nn.Module):
|
54 |
+
def __init__(self, in_size, out_size, dropout=0.0):
|
55 |
+
super(UNetUp, self).__init__()
|
56 |
+
layers = [
|
57 |
+
nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, bias=False),
|
58 |
+
nn.InstanceNorm2d(out_size),
|
59 |
+
nn.ReLU(inplace=True),
|
60 |
+
]
|
61 |
+
if dropout:
|
62 |
+
layers.append(nn.Dropout(dropout))
|
63 |
+
self.model = nn.Sequential(*layers)
|
64 |
+
|
65 |
+
def forward(self, x, skip_input):
|
66 |
+
x = self.model(x)
|
67 |
+
x = torch.cat((x, skip_input), 1)
|
68 |
+
return x
|
69 |
+
|
70 |
+
class GeneratorUNet(nn.Module):
|
71 |
+
def __init__(self, in_channels=3, out_channels=3):
|
72 |
+
super(GeneratorUNet, self).__init__()
|
73 |
+
|
74 |
+
self.down1 = UNetDown(in_channels, 64, normalize=False)
|
75 |
+
self.down2 = UNetDown(64, 128)
|
76 |
+
self.down3 = UNetDown(128, 256)
|
77 |
+
self.down4 = UNetDown(256, 512, dropout=0.5)
|
78 |
+
self.down5 = UNetDown(512, 512, dropout=0.5)
|
79 |
+
self.down6 = UNetDown(512, 512, dropout=0.5)
|
80 |
+
self.down7 = UNetDown(512, 512, dropout=0.5)
|
81 |
+
self.down8 = UNetDown(512, 512, normalize=False, dropout=0.5)
|
82 |
+
|
83 |
+
self.up1 = UNetUp(512, 512, dropout=0.5)
|
84 |
+
self.up2 = UNetUp(1024, 512, dropout=0.5)
|
85 |
+
self.up3 = UNetUp(1024, 512, dropout=0.5)
|
86 |
+
self.up4 = UNetUp(1024, 512, dropout=0.5)
|
87 |
+
self.up5 = UNetUp(1024, 256)
|
88 |
+
self.up6 = UNetUp(512, 128)
|
89 |
+
self.up7 = UNetUp(256, 64)
|
90 |
+
|
91 |
+
self.final = nn.Sequential(
|
92 |
+
nn.ConvTranspose2d(128, out_channels, 4, 2, 1),
|
93 |
+
nn.Tanh(),
|
94 |
+
)
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
# U-Net generator with skip connections from encoder to decoder
|
98 |
+
d1 = self.down1(x)
|
99 |
+
d2 = self.down2(d1)
|
100 |
+
d3 = self.down3(d2)
|
101 |
+
d4 = self.down4(d3)
|
102 |
+
d5 = self.down5(d4)
|
103 |
+
d6 = self.down6(d5)
|
104 |
+
d7 = self.down7(d6)
|
105 |
+
d8 = self.down8(d7)
|
106 |
+
u1 = self.up1(d8, d7)
|
107 |
+
u2 = self.up2(u1, d6)
|
108 |
+
u3 = self.up3(u2, d5)
|
109 |
+
u4 = self.up4(u3, d4)
|
110 |
+
u5 = self.up5(u4, d3)
|
111 |
+
u6 = self.up6(u5, d2)
|
112 |
+
u7 = self.up7(u6, d1)
|
113 |
+
return self.final(u7)
|
114 |
+
|
115 |
+
|
116 |
+
def parse_args():
|
117 |
+
parser = argparse.ArgumentParser(description="Generate images using Pix2Pix model from HuggingFace Hub")
|
118 |
+
parser.add_argument(
|
119 |
+
"--repo_id",
|
120 |
+
type=str,
|
121 |
+
required=True,
|
122 |
+
help="HuggingFace Hub repository ID (e.g., 'username/model_name')"
|
123 |
+
)
|
124 |
+
parser.add_argument(
|
125 |
+
"--model_file",
|
126 |
+
type=str,
|
127 |
+
default="model.pt",
|
128 |
+
help="Name of the model file in the repository"
|
129 |
+
)
|
130 |
+
parser.add_argument(
|
131 |
+
"--input_image",
|
132 |
+
type=str,
|
133 |
+
required=True,
|
134 |
+
help="Path to input image (night image to transform to day)"
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--output_image",
|
138 |
+
type=str,
|
139 |
+
default="output.png",
|
140 |
+
help="Path to save the generated image"
|
141 |
+
)
|
142 |
+
parser.add_argument(
|
143 |
+
"--image_size",
|
144 |
+
type=int,
|
145 |
+
default=256,
|
146 |
+
help="Size of the input/output images"
|
147 |
+
)
|
148 |
+
parser.add_argument(
|
149 |
+
"--display",
|
150 |
+
action="store_true",
|
151 |
+
help="Display input and output images using matplotlib"
|
152 |
+
)
|
153 |
+
parser.add_argument(
|
154 |
+
"--token",
|
155 |
+
type=str,
|
156 |
+
default=None,
|
157 |
+
help="HuggingFace token for accessing private repositories"
|
158 |
+
)
|
159 |
+
return parser.parse_args()
|
160 |
+
|
161 |
+
|
162 |
+
def main():
|
163 |
+
args = parse_args()
|
164 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
165 |
+
|
166 |
+
print(f"Using device: {device}")
|
167 |
+
|
168 |
+
# Set up image transformations
|
169 |
+
transform_input = Compose([
|
170 |
+
Resize((args.image_size, args.image_size)),
|
171 |
+
ToTensor(),
|
172 |
+
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
173 |
+
])
|
174 |
+
|
175 |
+
# Initialize model
|
176 |
+
print("Initializing model...")
|
177 |
+
generator = GeneratorUNet()
|
178 |
+
generator.to(device)
|
179 |
+
|
180 |
+
# Download model from Hugging Face Hub
|
181 |
+
print(f"Downloading model from {args.repo_id}...")
|
182 |
+
try:
|
183 |
+
model_path = hf_hub_download(
|
184 |
+
repo_id=args.repo_id,
|
185 |
+
filename=args.model_file,
|
186 |
+
token=args.token
|
187 |
+
)
|
188 |
+
print(f"Model downloaded to {model_path}")
|
189 |
+
except Exception as e:
|
190 |
+
print(f"Error downloading model: {e}")
|
191 |
+
sys.exit(1)
|
192 |
+
|
193 |
+
# Load model weights
|
194 |
+
try:
|
195 |
+
generator.load_state_dict(torch.load(model_path, map_location=device))
|
196 |
+
generator.eval()
|
197 |
+
print("Model loaded successfully")
|
198 |
+
except Exception as e:
|
199 |
+
print(f"Error loading model weights: {e}")
|
200 |
+
sys.exit(1)
|
201 |
+
|
202 |
+
# Load and preprocess input image
|
203 |
+
try:
|
204 |
+
image = Image.open(args.input_image).convert("RGB")
|
205 |
+
original_image = image.copy()
|
206 |
+
input_tensor = transform_input(image).unsqueeze(0).to(device)
|
207 |
+
print(f"Input image loaded: {args.input_image}")
|
208 |
+
except Exception as e:
|
209 |
+
print(f"Error loading input image: {e}")
|
210 |
+
sys.exit(1)
|
211 |
+
|
212 |
+
# Generate output image
|
213 |
+
print("Generating image...")
|
214 |
+
with torch.no_grad():
|
215 |
+
fake_B = generator(input_tensor)
|
216 |
+
|
217 |
+
# Save the output image
|
218 |
+
try:
|
219 |
+
# Denormalize and convert back to image
|
220 |
+
output_image = fake_B.cpu()
|
221 |
+
save_image(output_image, args.output_image, normalize=True)
|
222 |
+
print(f"Output image saved to {args.output_image}")
|
223 |
+
|
224 |
+
# Create a PIL image for display if needed
|
225 |
+
to_pil = ToPILImage()
|
226 |
+
output_pil = to_pil(output_image.squeeze(0) * 0.5 + 0.5)
|
227 |
+
except Exception as e:
|
228 |
+
print(f"Error saving output image: {e}")
|
229 |
+
sys.exit(1)
|
230 |
+
|
231 |
+
# Display images if requested
|
232 |
+
if args.display:
|
233 |
+
try:
|
234 |
+
plt.figure(figsize=(10, 5))
|
235 |
+
|
236 |
+
plt.subplot(1, 2, 1)
|
237 |
+
plt.title("Input Image (Night)")
|
238 |
+
plt.imshow(original_image)
|
239 |
+
plt.axis("off")
|
240 |
+
|
241 |
+
plt.subplot(1, 2, 2)
|
242 |
+
plt.title("Generated Image (Day)")
|
243 |
+
plt.imshow(output_pil)
|
244 |
+
plt.axis("off")
|
245 |
+
|
246 |
+
plt.tight_layout()
|
247 |
+
plt.show()
|
248 |
+
except Exception as e:
|
249 |
+
print(f"Error displaying images: {e}")
|
250 |
+
|
251 |
+
|
252 |
+
if __name__ == "__main__":
|
253 |
+
main()
|
254 |
+
```
|
255 |
+
python pix2pixinference.py --repo_id "uisikdag/gan-pix2pix-night2day" --input_image "night_image.jpg" --output_image "day_image.png"
|
256 |
|