File size: 16,387 Bytes
037088f
d0db77a
 
 
 
 
 
037088f
d0db77a
 
037088f
d0db77a
037088f
d0db77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
037088f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
---
base_model: Qwen/Qwen3-0.6B
language:
- en
library_name: transformers
license_link: https://huggingface.co/Qwen/Qwen3-0.6B/blob/main/LICENSE
license: apache-2.0
tags:
- qwen3
- qwen
- unsloth
- transformers
---
<div>
  <p style="margin-bottom: 0; margin-top: 0;">
    <strong>See <a href="https://huggingface.co/collections/unsloth/qwen3-680edabfb790c8c34a242f95">our collection</a> for all versions of Qwen3 including GGUF, 4-bit & 16-bit formats.</strong>
  </p>
  <p style="margin-bottom: 0;">
    <em>Learn to run Qwen3 correctly - <a href="https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune">Read our Guide</a>.</em>
  </p>
<p style="margin-top: 0;margin-bottom: 0;">
    <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
  </p>
  <div style="display: flex; gap: 5px; align-items: center; ">
    <a href="https://github.com/unslothai/unsloth/">
      <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
    </a>
    <a href="https://discord.gg/unsloth">
      <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
    </a>
    <a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-deepseek-r1-on-your-own-local-device">
      <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
    </a>
  </div>
<h1 style="margin-top: 0rem;">✨ Run & Fine-tune Qwen3 with Unsloth!</h1>
</div>

- Fine-tune Qwen3 (14B) for free using our Google [Colab notebook here](https://docs.unsloth.ai/get-started/unsloth-notebooks)!
- Read our Blog about Qwen3 support: [unsloth.ai/blog/qwen3](https://unsloth.ai/blog/qwen3)
- View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
- Run & export your fine-tuned model to Ollama, llama.cpp or HF.

| Unsloth supports          |    Free Notebooks                                                                                           | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Qwen3 (14B)**      | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks)               | 3x faster | 70% less |
| **GRPO with Qwen3 (8B)**      | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks)               | 3x faster | 80% less |
| **Llama-3.2 (3B)**      | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb)               | 2.4x faster | 58% less |
| **Llama-3.2 (11B vision)**      | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb)               | 2x faster | 60% less |
| **Qwen2.5 (7B)**      | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb)               | 2x faster | 60% less |
| **Phi-4 (14B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb)               | 2x faster | 50% less |

# Qwen3-0.6B

## Qwen3 Highlights

Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:

- **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
- **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
- **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
- **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
- **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.

## Model Overview

**Qwen3-0.6B** has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Number of Parameters: 0.6B
- Number of Paramaters (Non-Embedding): 0.44B
- Number of Layers: 28
- Number of Attention Heads (GQA): 16 for Q and 8 for KV
- Context Length: 32,768 

For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).

## Quickstart

The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.

With `transformers<4.51.0`, you will encounter the following error:
```
KeyError: 'qwen3'
```

The following contains a code snippet illustrating how to use the model generate content based on given inputs. 
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/Qwen3-0.6B"

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 

# parsing thinking content
try:
    # rindex finding 151668 (</think>)
    index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
    index = 0

thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")

print("thinking content:", thinking_content)
print("content:", content)
```

For deployment, you can use `vllm>=0.8.5` or `sglang>=0.4.5.post2` to create an OpenAI-compatible API endpoint:
- vLLM:
    ```shell
    vllm serve Qwen/Qwen3-0.6B --enable-reasoning --reasoning-parser deepseek_r1
    ```
- SGLang:
    ```shell
    python -m sglang.launch_server --model-path Qwen/Qwen3-0.6B --reasoning-parser deepseek-r1
    ```

## Switching Between Thinking and Non-Thinking Mode

> [!TIP]
> The `enable_thinking` switch is also available in APIs created by vLLM and SGLang. 
> Please refer to [our documentation](https://qwen.readthedocs.io/) for more details.

### `enable_thinking=True`

By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.

```python
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True  # True is the default value for enable_thinking
)
```

In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.

> [!NOTE]
> For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.


### `enable_thinking=False`

We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.

```python
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=False  # Setting enable_thinking=False disables thinking mode
)
```

In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.

> [!NOTE]
> For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.

### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input

We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.

Here is an example of a multi-turn conversation:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

class QwenChatbot:
    def __init__(self, model_name="Qwen/Qwen3-0.6B"):
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForCausalLM.from_pretrained(model_name)
        self.history = []

    def generate_response(self, user_input):
        messages = self.history + [{"role": "user", "content": user_input}]

        text = self.tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )

        inputs = self.tokenizer(text, return_tensors="pt")
        response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
        response = self.tokenizer.decode(response_ids, skip_special_tokens=True)

        # Update history
        self.history.append({"role": "user", "content": user_input})
        self.history.append({"role": "assistant", "content": response})

        return response

# Example Usage
if __name__ == "__main__":
    chatbot = QwenChatbot()

    # First input (without /think or /no_think tags, thinking mode is enabled by default)
    user_input_1 = "How many r's in strawberries?"
    print(f"User: {user_input_1}")
    response_1 = chatbot.generate_response(user_input_1)
    print(f"Bot: {response_1}")
    print("----------------------")

    # Second input with /no_think
    user_input_2 = "Then, how many r's in blueberries? /no_think"
    print(f"User: {user_input_2}")
    response_2 = chatbot.generate_response(user_input_2)
    print(f"Bot: {response_2}") 
    print("----------------------")

    # Third input with /think
    user_input_3 = "Really? /think"
    print(f"User: {user_input_3}")
    response_3 = chatbot.generate_response(user_input_3)
    print(f"Bot: {response_3}")
```

> **Note**
> For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
> When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.

## Agentic Use

Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.

To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
```python
from qwen_agent.agents import Assistant

# Define LLM
llm_cfg = {
    'model': 'Qwen3-0.6B',

    # Use the endpoint provided by Alibaba Model Studio:
    # 'model_type': 'qwen_dashscope',
    # 'api_key': os.getenv('DASHSCOPE_API_KEY'),

    # Use a custom endpoint compatible with OpenAI API:
    'model_server': 'http://localhost:8000/v1',  # api_base
    'api_key': 'EMPTY',

    # Other parameters:
    # 'generate_cfg': {
    #         # Add: When the response content is `<think>this is the thought</think>this is the answer;
    #         # Do not add: When the response has been separated by reasoning_content and content.
    #         'thought_in_content': True,
    #     },
}

# Define Tools
tools = [
    {'mcpServers': {  # You can specify the MCP configuration file
            'time': {
                'command': 'uvx',
                'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
            },
            "fetch": {
                "command": "uvx",
                "args": ["mcp-server-fetch"]
            }
        }
    },
  'code_interpreter',  # Built-in tools
]

# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)

# Streaming generation
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
for responses in bot.run(messages=messages):
    pass
print(responses)
```

## Best Practices

To achieve optimal performance, we recommend the following settings:

1. **Sampling Parameters**:
   - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
   - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
   - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.

2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.

3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
   - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
   - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."

4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.

### Citation

If you find our work helpful, feel free to give us a cite.

```
@misc{qwen3,
    title  = {Qwen3},
    url    = {https://qwenlm.github.io/blog/qwen3/},
    author = {Qwen Team},
    month  = {April},
    year   = {2025}
}
```