vladislavbro commited on
Commit
034b9f9
·
verified ·
1 Parent(s): a51ef74

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -3
README.md CHANGED
@@ -1,14 +1,33 @@
1
  ---
2
  library_name: transformers
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
4
 
5
  This is the HF transformers implementation for D-FINE
6
 
7
- Model: D-FINE-X-COCO
8
 
9
  D-FINE, a powerful real-time object detector that achieves outstanding localization precision by redefining the bounding box regression task in DETR models. D-FINE comprises two key components: Fine-grained Distribution Refinement (FDR) and Global Optimal Localization Self-Distillation (GO-LSD).
10
 
11
- Usage:
 
 
12
 
13
  ```python
14
  import torch
@@ -34,4 +53,12 @@ for result in results:
34
  for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
35
  score, label = score.item(), label_id.item()
36
  box = [round(i, 2) for i in box.tolist()]
37
- print(f"{model.config.id2label[label]}: {score:.2f} {box}")
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ pipeline_tag: object-detection
7
+ tags:
8
+ - object-detection
9
+ - vision
10
+ datasets:
11
+ - coco
12
  ---
13
+ ## D-FINE
14
+
15
+ ### **Overview**
16
+
17
+ The D-FINE model was proposed in [D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement](https://arxiv.org/abs/2410.13842) by
18
+ Yansong Peng, Hebei Li, Peixi Wu, Yueyi Zhang, Xiaoyan Sun, Feng Wu
19
+
20
+ This model was contributed by [VladOS95-cyber](https://github.com/VladOS95-cyber) with the help of [@qubvel-hf](https://huggingface.co/qubvel-hf)
21
 
22
  This is the HF transformers implementation for D-FINE
23
 
24
+ ### **Performance**
25
 
26
  D-FINE, a powerful real-time object detector that achieves outstanding localization precision by redefining the bounding box regression task in DETR models. D-FINE comprises two key components: Fine-grained Distribution Refinement (FDR) and Global Optimal Localization Self-Distillation (GO-LSD).
27
 
28
+ ![COCO.png](https://huggingface.co/datasets/vladislavbro/images/resolve/main/COCO.PNG)
29
+
30
+ ### **How to use**
31
 
32
  ```python
33
  import torch
 
53
  for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
54
  score, label = score.item(), label_id.item()
55
  box = [round(i, 2) for i in box.tolist()]
56
+ print(f"{model.config.id2label[label]}: {score:.2f} {box}")
57
+ ```
58
+
59
+ ### **Training**
60
+
61
+ D-FINE is trained on COCO (Lin et al. [2014]) train2017 and validated on COCO val2017 dataset. We report the standard AP metrics (averaged over uniformly sampled IoU thresholds ranging from 0.50 − 0.95 with a step size of 0.05), and APval5000 commonly used in real scenarios.
62
+
63
+ ### **Applications**
64
+ D-FINE is ideal for real-time object detection in diverse applications such as **autonomous driving**, **surveillance systems**, **robotics**, and **retail analytics**. Its enhanced flexibility and deployment-friendly design make it suitable for both edge devices and large-scale systems + ensures high accuracy and speed in dynamic, real-world environments.