|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch Llava model.""" |
|
|
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_outputs import ModelOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.models.auto import AutoModel, AutoModelForCausalLM |
|
from transformers.models.llava.configuration_llava import LlavaConfig |
|
import os |
|
import numpy as np |
|
from pathlib import Path |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "LlavaConfig" |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "llava-hf/llava-1.5-7b-hf" |
|
|
|
@dataclass |
|
class LlavaCausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for Llava causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_hidden_states (`torch.FloatTensor`, *optional*): |
|
A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`. |
|
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[torch.FloatTensor] = None |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import warnings |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
import os |
|
import pickle |
|
import random |
|
import warnings |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
import os |
|
import pickle |
|
import random |
|
import warnings |
|
|
|
class VectorQuantizerCLS(nn.Module): |
|
def __init__(self, num_embeddings: int = 64, embedding_dim: int = 4096, commitment_cost: float = 0.25, |
|
codebook_path: str = None, mapping_path: str = None, use_cosine: bool = True, |
|
randomize_indices: bool = True): |
|
super().__init__() |
|
self.num_embeddings = num_embeddings |
|
self.embedding_dim = embedding_dim |
|
self.commitment_cost = commitment_cost |
|
self.use_cosine = use_cosine |
|
|
|
|
|
self.embedding = nn.Embedding(num_embeddings, embedding_dim) |
|
self.embedding.weight.data.uniform_(-1/num_embeddings, 1/num_embeddings) |
|
|
|
self.register_buffer('_category_mapping_indices', torch.zeros(num_embeddings, dtype=torch.long)) |
|
self.register_buffer('_category_mapping_names', torch.zeros(num_embeddings, dtype=torch.long)) |
|
|
|
self.center_to_category = None |
|
|
|
|
|
|
|
def _store_category_mapping(self): |
|
if not self.center_to_category: |
|
warnings.warn("No category mapping to store") |
|
return |
|
|
|
all_categories = sorted(set(self.center_to_category.values())) |
|
|
|
indices = list(self.center_to_category.keys()) |
|
category_ids = [self.center_to_category[idx] for idx in indices] |
|
|
|
if len(indices) != self._category_mapping_indices.size(0): |
|
self.register_buffer('_category_mapping_indices', torch.zeros(len(indices), dtype=torch.long)) |
|
self.register_buffer('_category_mapping_names', torch.zeros(len(indices), dtype=torch.long)) |
|
|
|
self._category_mapping_indices.copy_(torch.tensor(indices, dtype=torch.long)) |
|
self._category_mapping_names.copy_(torch.tensor(category_ids, dtype=torch.long)) |
|
|
|
print(f"Stored category mapping with {len(indices)} entries and {len(all_categories)} unique categories") |
|
|
|
def _load_category_mapping(self): |
|
if not hasattr(self, '_category_mapping_indices') or self._category_mapping_indices.numel() == 0: |
|
warnings.warn("No stored category mapping found") |
|
return {} |
|
|
|
indices = self._category_mapping_indices.tolist() |
|
category_ids = self._category_mapping_names.tolist() |
|
|
|
mapping = {} |
|
for idx, cat_id in zip(indices, category_ids): |
|
mapping[idx] = cat_id |
|
|
|
return mapping |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): |
|
indices_key = prefix + '_category_mapping_indices' |
|
names_key = prefix + '_category_mapping_names' |
|
|
|
if indices_key in state_dict and names_key in state_dict: |
|
indices_size = state_dict[indices_key].size() |
|
names_size = state_dict[names_key].size() |
|
|
|
if hasattr(self, '_category_mapping_indices') and self._category_mapping_indices.size() != indices_size: |
|
self.register_buffer('_category_mapping_indices', torch.zeros(indices_size, dtype=torch.long)) |
|
|
|
if hasattr(self, '_category_mapping_names') and self._category_mapping_names.size() != names_size: |
|
self.register_buffer('_category_mapping_names', torch.zeros(names_size, dtype=torch.long)) |
|
|
|
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) |
|
|
|
self.center_to_category = self._load_category_mapping() |
|
|
|
if hasattr(self, 'embedding') and hasattr(self.embedding, 'weight'): |
|
self.num_embeddings = self.embedding.weight.size(0) |
|
|
|
def forward(self, inputs): |
|
|
|
if inputs.shape != (1, 4096): |
|
raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}") |
|
|
|
self.embedding.weight.data = self.embedding.weight.data.to(dtype=inputs.dtype) |
|
|
|
flat_input = inputs |
|
|
|
if self.use_cosine: |
|
normalized_input = F.normalize(flat_input, p=2, dim=1) |
|
normalized_weights = F.normalize(self.embedding.weight, p=2, dim=1) |
|
|
|
cosine_sim = torch.matmul(normalized_input, normalized_weights.t()) |
|
|
|
distances = 1 - cosine_sim |
|
else: |
|
distances = (torch.sum(flat_input**2, dim=1, keepdim=True) |
|
+ torch.sum(self.embedding.weight**2, dim=1) |
|
- 2 * torch.matmul(flat_input, self.embedding.weight.t())) |
|
|
|
encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) |
|
|
|
encodings = torch.zeros(encoding_indices.shape[0], self.num_embeddings, device=inputs.device).to(inputs.dtype) |
|
encodings.scatter_(1, encoding_indices, 1) |
|
|
|
quantized = torch.matmul(encodings, self.embedding.weight) |
|
|
|
e_latent_loss = torch.mean((quantized.detach() - flat_input)**2) |
|
q_latent_loss = torch.mean((quantized - flat_input.detach())**2) |
|
loss = q_latent_loss + self.commitment_cost * e_latent_loss |
|
|
|
print("this is q_latent_loss", q_latent_loss) |
|
print("This is e_latent_loss", self.commitment_cost * e_latent_loss) |
|
|
|
quantized = flat_input + (quantized - flat_input).detach() |
|
|
|
avg_probs = torch.mean(encodings, dim=0) |
|
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) |
|
|
|
return quantized, loss, perplexity, encoding_indices.squeeze() |
|
|
|
def encode(self, inputs): |
|
if inputs.shape != (1, 4096): |
|
raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}") |
|
|
|
with torch.no_grad(): |
|
if self.use_cosine: |
|
normalized_input = F.normalize(inputs, p=2, dim=1) |
|
normalized_weights = F.normalize(self.embedding.weight, p=2, dim=1) |
|
cosine_sim = torch.matmul(normalized_input, normalized_weights.t()) |
|
distances = 1 - cosine_sim |
|
else: |
|
distances = (torch.sum(inputs**2, dim=1, keepdim=True) |
|
+ torch.sum(self.embedding.weight**2, dim=1) |
|
- 2 * torch.matmul(inputs, self.embedding.weight.t())) |
|
|
|
encoding_indices = torch.argmin(distances, dim=1) |
|
|
|
return encoding_indices |
|
|
|
def get_category_from_index(self, indices): |
|
|
|
if self.center_to_category is None: |
|
self.center_to_category = self._load_category_mapping() |
|
|
|
if not self.center_to_category: |
|
return [0] * indices.numel() |
|
|
|
|
|
indices_np = indices.cpu().numpy().flatten() |
|
|
|
|
|
categories = [] |
|
for idx in indices_np: |
|
idx_int = int(idx) |
|
category = self.center_to_category.get(idx_int, 0) |
|
categories.append(category) |
|
|
|
return categories |
|
|
|
def classify(self, inputs): |
|
|
|
if inputs.shape != (1, 4096): |
|
raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}") |
|
|
|
indices = self.encode(inputs) |
|
categories = self.get_category_from_index(indices) |
|
return categories, indices |
|
|
|
|
|
|
|
class VectorQuantizer(nn.Module): |
|
def __init__(self, num_embeddings: int, embedding_dim: int, commitment_cost: float = 0.25): |
|
super().__init__() |
|
self.num_embeddings = num_embeddings |
|
self.embedding_dim = embedding_dim |
|
self.commitment_cost = commitment_cost |
|
|
|
self.embedding = nn.Embedding(num_embeddings, embedding_dim) |
|
self.embedding.weight.data.uniform_(-1/num_embeddings, 1/num_embeddings) |
|
|
|
def forward(self, inputs): |
|
|
|
self.embedding.weight.data = self.embedding.weight.data.to(dtype=inputs.dtype) |
|
inputs = inputs.permute(0, 2, 1).contiguous() |
|
input_shape = inputs.shape |
|
|
|
flat_input = inputs.view(-1, self.embedding_dim) |
|
|
|
|
|
distances = (torch.sum(flat_input**2, dim=1, keepdim=True) |
|
+ torch.sum(self.embedding.weight**2, dim=1) |
|
- 2 * torch.matmul(flat_input, self.embedding.weight.t())) |
|
|
|
|
|
encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) |
|
encodings = torch.zeros(encoding_indices.shape[0], self.num_embeddings, device=inputs.device).to(inputs.dtype) |
|
encodings.scatter_(1, encoding_indices, 1) |
|
|
|
quantized = torch.matmul(encodings, self.embedding.weight).view(input_shape) |
|
|
|
|
|
e_latent_loss = torch.mean((quantized.detach() - inputs)**2) |
|
q_latent_loss = torch.mean((quantized - inputs.detach())**2) |
|
loss = q_latent_loss + self.commitment_cost * e_latent_loss |
|
print("this is q_latent_loss", q_latent_loss) |
|
print("This is e_latent_loss", self.commitment_cost * e_latent_loss) |
|
quantized = inputs + (quantized - inputs).detach() |
|
avg_probs = torch.mean(encodings, dim=0) |
|
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) |
|
|
|
return quantized.permute(0, 2, 1).contiguous(), loss, perplexity |
|
|
|
class LlavaMultiModalProjector(nn.Module): |
|
def __init__(self, config: LlavaConfig): |
|
super().__init__() |
|
print(config) |
|
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) |
|
self.act = ACT2FN[config.projector_hidden_act] |
|
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) |
|
self.vq = VectorQuantizer( |
|
num_embeddings=16000, |
|
embedding_dim=config.text_config.hidden_size, |
|
commitment_cost=0.5 |
|
) |
|
self.vq_cls = VectorQuantizerCLS( |
|
num_embeddings=128, |
|
embedding_dim=4096, |
|
commitment_cost=0.25, |
|
use_cosine=True |
|
) |
|
|
|
def forward(self, image_features): |
|
cls_features = image_features[: , :1] |
|
cls_features = self.linear_1(cls_features) |
|
cls_features = self.act(cls_features) |
|
cls_features = self.linear_2(cls_features) |
|
cls_features = cls_features[:, 0] |
|
quantized, loss, perplexity, indices = self.vq_cls(cls_features) |
|
categories = self.vq_cls.get_category_from_index(indices) |
|
indices = indices.cpu().numpy() |
|
print(indices) |
|
print(categories) |
|
if categories[0] != 0 : |
|
raise ValueError([indices, categories[0]]) |
|
image_features = image_features[: , 1:] |
|
hidden_states = self.linear_1(image_features) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
|
|
quantized_features, vq_loss, perplexity = self.vq(hidden_states) |
|
|
|
return quantized_features, vq_loss, indices,categories |
|
|
|
|
|
LLAVA_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`LlavaConfig`] or [`LlavaVisionConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.", |
|
LLAVA_START_DOCSTRING, |
|
) |
|
class LlavaPreTrainedModel(PreTrainedModel): |
|
config_class = LlavaConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["LlavaVisionAttention"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_cache_class = True |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
def _init_weights(self, module): |
|
|
|
|
|
|
|
std = ( |
|
self.config.initializer_range |
|
if hasattr(self.config, "initializer_range") |
|
else self.config.text_config.initializer_range |
|
) |
|
|
|
if hasattr(module, "class_embedding"): |
|
module.class_embedding.data.normal_(mean=0.0, std=std) |
|
|
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
LLAVA_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): |
|
The tensors corresponding to the input images. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses |
|
[`CLIPImageProcessor`] for processing images). |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
vision_feature_layer (`int`, *optional*, defaults to -2): |
|
The index of the layer to select the vision feature. |
|
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): |
|
The feature selection strategy used to select the vision feature from the vision backbone. |
|
Can be one of `"default"` or `"full"`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"""The LLAVA model which consists of a vision backbone and a language model.""", |
|
LLAVA_START_DOCSTRING, |
|
) |
|
|
|
|
|
class LlavaForConditionalGeneration(LlavaPreTrainedModel, GenerationMixin): |
|
def __init__(self, config: LlavaConfig): |
|
super().__init__(config) |
|
self.vision_tower = AutoModel.from_config(config.vision_config) |
|
|
|
self.multi_modal_projector = LlavaMultiModalProjector(config) |
|
self.vocab_size = config.text_config.vocab_size |
|
self.language_model = AutoModelForCausalLM.from_config(config.text_config) |
|
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.set_decoder(decoder) |
|
|
|
def get_decoder(self): |
|
return self.language_model.get_decoder() |
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |
|
|
|
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: |
|
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) |
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings |
|
self.vocab_size = model_embeds.num_embeddings |
|
return model_embeds |
|
|
|
def get_image_features( |
|
self, pixel_values: torch.FloatTensor, vision_feature_layer: int, vision_feature_select_strategy: str |
|
): |
|
""" |
|
Obtains image last hidden states from the vision tower and apply multimodal projection. |
|
|
|
Args: |
|
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) |
|
The tensors corresponding to the input images. |
|
vision_feature_layer (`int`): |
|
The index of the layer to select the vision feature. |
|
vision_feature_select_strategy (`str`): |
|
The feature selection strategy used to select the vision feature from the vision backbone. |
|
Can be one of `"default"` or `"full"` |
|
Returns: |
|
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). |
|
""" |
|
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True) |
|
selected_image_feature = image_outputs.hidden_states[vision_feature_layer] |
|
|
|
selected_image_feature = selected_image_feature |
|
|
|
image_features, vq_loss, indices,categories = self.multi_modal_projector(selected_image_feature) |
|
return image_features, vq_loss, indices,categories |
|
|
|
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels): |
|
num_images, num_image_patches, embed_dim = image_features.shape |
|
batch_size, sequence_length = input_ids.shape |
|
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id)) |
|
|
|
special_image_token_mask = input_ids == self.config.image_token_index |
|
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) |
|
|
|
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length |
|
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index) |
|
|
|
|
|
|
|
|
|
|
|
|
|
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1 |
|
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] |
|
if left_padding: |
|
new_token_positions += nb_image_pad[:, None] |
|
text_to_overwrite = new_token_positions[batch_indices, non_image_indices] |
|
|
|
|
|
final_embedding = torch.zeros( |
|
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device |
|
) |
|
final_attention_mask = torch.zeros( |
|
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device |
|
) |
|
if labels is not None: |
|
final_labels = torch.full( |
|
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device |
|
) |
|
|
|
|
|
target_device = inputs_embeds.device |
|
batch_indices, non_image_indices, text_to_overwrite = ( |
|
batch_indices.to(target_device), |
|
non_image_indices.to(target_device), |
|
text_to_overwrite.to(target_device), |
|
) |
|
attention_mask = attention_mask.to(target_device) |
|
|
|
|
|
|
|
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] |
|
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] |
|
if labels is not None: |
|
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] |
|
|
|
|
|
image_to_overwrite = torch.full( |
|
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
image_to_overwrite[batch_indices, text_to_overwrite] = False |
|
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device) |
|
|
|
if image_to_overwrite.sum() != image_features.shape[:-1].numel(): |
|
raise ValueError( |
|
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while" |
|
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation." |
|
) |
|
final_embedding = final_embedding.to(image_features.dtype) |
|
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) |
|
final_attention_mask |= image_to_overwrite |
|
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) |
|
|
|
|
|
batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id) |
|
indices_to_mask = new_token_positions[batch_indices, pad_indices] |
|
|
|
final_embedding[batch_indices, indices_to_mask] = 0 |
|
|
|
if labels is None: |
|
final_labels = None |
|
|
|
return final_embedding, final_attention_mask, final_labels, position_ids |
|
|
|
@add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
pixel_values: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
vision_feature_layer: Optional[int] = None, |
|
vision_feature_select_strategy: Optional[str] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
num_logits_to_keep: int = 0, |
|
) -> Union[Tuple, LlavaCausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
num_logits_to_keep (`int`, *optional*): |
|
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all |
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that |
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size. |
|
|
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, LlavaForConditionalGeneration |
|
|
|
>>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf") |
|
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf") |
|
|
|
>>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:" |
|
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, text=prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(**inputs, max_new_tokens=15) |
|
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed" |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
vision_feature_layer = ( |
|
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer |
|
) |
|
vision_feature_select_strategy = ( |
|
vision_feature_select_strategy |
|
if vision_feature_select_strategy is not None |
|
else self.config.vision_feature_select_strategy |
|
) |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if pixel_values is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
legacy_processing = False |
|
if inputs_embeds is None: |
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
|
|
|
|
|
|
|
|
legacy_processing = ( |
|
(input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length |
|
) or (input_ids.shape[-1] == 1 and pixel_values is not None) |
|
|
|
image_features = None |
|
if pixel_values is not None: |
|
image_features, vq_loss, indices,categories = self.get_image_features( |
|
pixel_values=pixel_values, |
|
vision_feature_layer=vision_feature_layer, |
|
vision_feature_select_strategy=vision_feature_select_strategy, |
|
) |
|
|
|
if legacy_processing: |
|
logger.warning_once( |
|
"Expanding inputs for image tokens in LLaVa should be done in processing. " |
|
"Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly " |
|
"with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. " |
|
"Using processors without these attributes in the config is deprecated and will throw an error in v4.47." |
|
) |
|
|
|
if input_ids.shape[1] != 1: |
|
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features( |
|
image_features, inputs_embeds, input_ids, attention_mask, labels |
|
) |
|
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device) |
|
else: |
|
|
|
|
|
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] |
|
|
|
|
|
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) |
|
|
|
|
|
target_length = input_ids.shape[1] |
|
past_length = first_layer_past_key_value.shape[-1] |
|
|
|
extended_attention_mask = torch.ones( |
|
(attention_mask.shape[0], past_length), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device, |
|
) |
|
|
|
|
|
|
|
|
|
valid_indices = non_attended_tokens < extended_attention_mask.size(-1) |
|
new_batch_index = batch_index[valid_indices] |
|
new_non_attended_tokens = non_attended_tokens[valid_indices] |
|
|
|
|
|
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 |
|
|
|
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1) |
|
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 |
|
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[-target_length:] |
|
|
|
|
|
elif image_features is not None: |
|
n_image_tokens = (input_ids == self.config.image_token_index).sum(dim=-1)[0].item() |
|
n_image_features = image_features.shape[1] |
|
if n_image_tokens != n_image_features: |
|
raise ValueError( |
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" |
|
) |
|
special_image_mask = ( |
|
(input_ids == self.config.image_token_index) |
|
.unsqueeze(-1) |
|
.expand_as(inputs_embeds) |
|
.to(inputs_embeds.device) |
|
) |
|
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) |
|
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) |
|
self.language_model = self.language_model.to(inputs_embeds.dtype) |
|
outputs = self.language_model( |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
num_logits_to_keep=num_logits_to_keep, |
|
) |
|
|
|
logits = outputs[0] |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
if attention_mask is not None: |
|
|
|
|
|
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) |
|
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() |
|
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() |
|
else: |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) |
|
) |
|
print("This is original loss",loss) |
|
vq_loss = vq_loss.to(loss.device) |
|
loss = loss + vq_loss |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return LlavaCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
image_hidden_states=image_features if pixel_values is not None else None, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
pixel_values=None, |
|
attention_mask=None, |
|
cache_position=None, |
|
num_logits_to_keep=None, |
|
**kwargs, |
|
): |
|
|
|
|
|
model_inputs = self.language_model.prepare_inputs_for_generation( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
cache_position=cache_position, |
|
num_logits_to_keep=num_logits_to_keep, |
|
**kwargs, |
|
) |
|
|
|
if cache_position[0] == 0: |
|
|
|
|
|
model_inputs["pixel_values"] = pixel_values |
|
|
|
return model_inputs |
|
|
|
|