Upload folder using huggingface_hub
Browse files- config.json +66 -0
- generation_config.json +6 -0
- model-00001-of-00007.safetensors +3 -0
- model-00002-of-00007.safetensors +3 -0
- model-00003-of-00007.safetensors +3 -0
- model-00004-of-00007.safetensors +3 -0
- model-00005-of-00007.safetensors +3 -0
- model-00006-of-00007.safetensors +3 -0
- model-00007-of-00007.safetensors +3 -0
- model.safetensors.index.json +698 -0
- qllava3_test.py +1466 -0
- test_on_new_qllava.ipynb +2264 -0
config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/common/home/users/w/wzhao/qllava/vqllava3_finetune_on_filted_dataset_new/checkpoint-2131",
|
3 |
+
"architectures": [
|
4 |
+
"LlavaNextForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"ignore_index": -100,
|
7 |
+
"image_grid_pinpoints": [
|
8 |
+
[
|
9 |
+
336,
|
10 |
+
672
|
11 |
+
],
|
12 |
+
[
|
13 |
+
672,
|
14 |
+
336
|
15 |
+
],
|
16 |
+
[
|
17 |
+
672,
|
18 |
+
672
|
19 |
+
],
|
20 |
+
[
|
21 |
+
1008,
|
22 |
+
336
|
23 |
+
],
|
24 |
+
[
|
25 |
+
336,
|
26 |
+
1008
|
27 |
+
]
|
28 |
+
],
|
29 |
+
"image_seq_length": 576,
|
30 |
+
"image_token_index": 128256,
|
31 |
+
"model_type": "llava_next",
|
32 |
+
"projector_hidden_act": "gelu",
|
33 |
+
"text_config": {
|
34 |
+
"_name_or_path": "meta-llama/Meta-Llama-3-8B-Instruct",
|
35 |
+
"architectures": [
|
36 |
+
"LlamaForCausalLM"
|
37 |
+
],
|
38 |
+
"bos_token_id": 128000,
|
39 |
+
"eos_token_id": 128009,
|
40 |
+
"intermediate_size": 14336,
|
41 |
+
"max_position_embeddings": 8192,
|
42 |
+
"model_type": "llama",
|
43 |
+
"num_key_value_heads": 8,
|
44 |
+
"rms_norm_eps": 1e-05,
|
45 |
+
"rope_theta": 500000.0,
|
46 |
+
"torch_dtype": "bfloat16",
|
47 |
+
"vocab_size": 128320
|
48 |
+
},
|
49 |
+
"tie_word_embeddings": false,
|
50 |
+
"torch_dtype": "float32",
|
51 |
+
"transformers_version": "4.46.1",
|
52 |
+
"use_image_newline_parameter": true,
|
53 |
+
"vision_config": {
|
54 |
+
"hidden_size": 1024,
|
55 |
+
"image_size": 336,
|
56 |
+
"intermediate_size": 4096,
|
57 |
+
"model_type": "clip_vision_model",
|
58 |
+
"num_attention_heads": 16,
|
59 |
+
"num_hidden_layers": 24,
|
60 |
+
"patch_size": 14,
|
61 |
+
"projection_dim": 768,
|
62 |
+
"vocab_size": 32000
|
63 |
+
},
|
64 |
+
"vision_feature_layer": -2,
|
65 |
+
"vision_feature_select_strategy": "default"
|
66 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"eos_token_id": 128009,
|
5 |
+
"transformers_version": "4.46.1"
|
6 |
+
}
|
model-00001-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:316a0b931dd6da3341cbd4f6beb6bbd07b347278d61f03e5bdda86fa050b7e9d
|
3 |
+
size 4939760848
|
model-00002-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fbda1cd72808cce11e02dfe6950690561589bc828b35e0853d26978301382e2
|
3 |
+
size 4999813864
|
model-00003-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84a0f8a111d4d37c215122a185b6cfda626456b618a9ee94c3855fee778f1ff0
|
3 |
+
size 4832008176
|
model-00004-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:486029793e97d9610fc0c2819b8b1785eff787ec1bee69df4380f8f911dcfa62
|
3 |
+
size 4999813920
|
model-00005-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c133428f118b4a785d0c2763544b5694735c3ea90f660ff08c3bbcdf9569627
|
3 |
+
size 4999813920
|
model-00006-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59027fb4ae13d7c242b5cfad81feebdf645499338dc6a7885a548f7ef2228d54
|
3 |
+
size 4832008200
|
model-00007-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b0ea2e7d880e4103b58fb3bb8f2497f1c3118cba658dc32dc1987aaa5d61a17
|
3 |
+
size 4082224048
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,698 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 33685350400
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"image_newline": "model-00001-of-00007.safetensors",
|
7 |
+
"language_model.lm_head.weight": "model-00007-of-00007.safetensors",
|
8 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00007.safetensors",
|
9 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
|
10 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
|
11 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
|
12 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
|
13 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
|
14 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
15 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
16 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
17 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
18 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
19 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
20 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
|
21 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
22 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
23 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
24 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
25 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
26 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
27 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
28 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
29 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
30 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
31 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
32 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
33 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
34 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
35 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
36 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
37 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
38 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
39 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
40 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
41 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
42 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
43 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
44 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
45 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
46 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
47 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
48 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
49 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
50 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
51 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
52 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
53 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
54 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
55 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
56 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
57 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
58 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
59 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
60 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
61 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
62 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
63 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
64 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
65 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
66 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
67 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
68 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
69 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
70 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
71 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
72 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
73 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
74 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
75 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
76 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
77 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
78 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
79 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
80 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
81 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
82 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
83 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
84 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
85 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
86 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
87 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
88 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
89 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
90 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
91 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
92 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
93 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
94 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
95 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
96 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
97 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
98 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
99 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
100 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
101 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
102 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
103 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
104 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
105 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
106 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
107 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
108 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
109 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
110 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
111 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
112 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
113 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
114 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
115 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
116 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
117 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
118 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
119 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
120 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
121 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
122 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
123 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
124 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
125 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
126 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
127 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
128 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
129 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
130 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
131 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
132 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
133 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
134 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
135 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
136 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
137 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
138 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
139 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
140 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
141 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
142 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
143 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
144 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
145 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
146 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
147 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
148 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
149 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
150 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
151 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
152 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
153 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
154 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
155 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
156 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
157 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
158 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
159 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
160 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
161 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
162 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
163 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
164 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
165 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
166 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
167 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
168 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
169 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
170 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
171 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
172 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
173 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
174 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
175 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
176 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
177 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
178 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
179 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
180 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
181 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
182 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
183 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
184 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
185 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
186 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
187 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
188 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
189 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
190 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
191 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
192 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
193 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
194 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
195 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
196 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
197 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
198 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
199 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
200 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
201 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
202 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
203 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
204 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
205 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
206 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
207 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00007-of-00007.safetensors",
|
208 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
|
209 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
210 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
211 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
|
212 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
213 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
214 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
215 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
216 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
217 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
218 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
219 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
220 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
221 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
222 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
223 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
224 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
225 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00007-of-00007.safetensors",
|
226 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
|
227 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00007-of-00007.safetensors",
|
228 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
|
229 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
|
230 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
|
231 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00007-of-00007.safetensors",
|
232 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
|
233 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
|
234 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00007-of-00007.safetensors",
|
235 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
|
236 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00007-of-00007.safetensors",
|
237 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
|
238 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
|
239 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
|
240 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00007-of-00007.safetensors",
|
241 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
|
242 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
|
243 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
244 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
245 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
246 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
247 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
248 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
249 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
250 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
251 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
252 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
253 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
254 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
255 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
256 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
257 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
258 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
259 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
260 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
261 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
262 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
263 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
264 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
265 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
266 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
267 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
268 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
269 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
270 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
271 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
272 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
273 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
274 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
275 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
276 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
277 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
278 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
279 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
280 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
281 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
282 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
283 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
284 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
285 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
286 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
287 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
288 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
289 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
290 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
291 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
292 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
293 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
294 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
295 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
296 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
297 |
+
"language_model.model.norm.weight": "model-00007-of-00007.safetensors",
|
298 |
+
"multi_modal_projector.linear_1.bias": "model-00001-of-00007.safetensors",
|
299 |
+
"multi_modal_projector.linear_1.weight": "model-00001-of-00007.safetensors",
|
300 |
+
"multi_modal_projector.linear_2.bias": "model-00001-of-00007.safetensors",
|
301 |
+
"multi_modal_projector.linear_2.weight": "model-00001-of-00007.safetensors",
|
302 |
+
"multi_modal_projector.vq.embedding.weight": "model-00001-of-00007.safetensors",
|
303 |
+
"multi_modal_projector.vq_cls._category_mapping_indices": "model-00001-of-00007.safetensors",
|
304 |
+
"multi_modal_projector.vq_cls._category_mapping_names": "model-00001-of-00007.safetensors",
|
305 |
+
"multi_modal_projector.vq_cls.embedding.weight": "model-00001-of-00007.safetensors",
|
306 |
+
"vision_tower.vision_model.embeddings.class_embedding": "model-00001-of-00007.safetensors",
|
307 |
+
"vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00007.safetensors",
|
308 |
+
"vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00007.safetensors",
|
309 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
310 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
311 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
312 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
313 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
314 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
315 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
316 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
317 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
318 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
319 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
320 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
321 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
322 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
323 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
324 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
325 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
326 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
327 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
328 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
329 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
330 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
331 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
332 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
333 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
334 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
335 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
336 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
337 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
338 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
339 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
340 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
341 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
342 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
343 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
344 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
345 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
346 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
347 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
348 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
349 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
350 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
351 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
352 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
353 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
354 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
355 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
356 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
357 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
358 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
359 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
360 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
361 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
362 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
363 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
364 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
365 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
366 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
367 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
368 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
369 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
370 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
371 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
372 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
373 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
374 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
375 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
376 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
377 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
378 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
379 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
380 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
381 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
382 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
383 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
384 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
385 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
386 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
387 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
388 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
389 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
390 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
391 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
392 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
393 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
394 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
395 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
396 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
397 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
398 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
399 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
400 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
401 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
402 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
403 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
404 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
405 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
406 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
407 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
408 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
409 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
410 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
411 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
412 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
413 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
414 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
415 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
416 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
417 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
418 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
419 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
420 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
421 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
422 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
423 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
424 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
425 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
426 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
427 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
428 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
429 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
430 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
431 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
432 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
433 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
434 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
435 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
436 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
437 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
438 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
439 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
440 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
441 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
442 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
443 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
444 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
445 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
446 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
447 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
448 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
449 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
450 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
451 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
452 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
453 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
454 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
455 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
456 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
457 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
458 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
459 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
460 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
461 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
462 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
463 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
464 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
465 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
466 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
467 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
468 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
469 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
470 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
471 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
472 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
473 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
474 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
475 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
476 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
477 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
478 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
479 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
480 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
481 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
482 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
483 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
484 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
485 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
486 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
487 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
488 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
489 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
490 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
491 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
492 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
493 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
494 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
495 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
496 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
497 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
498 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
499 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
500 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
501 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
502 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
503 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
504 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
505 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
506 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
507 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
508 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
509 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
510 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
511 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
512 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
513 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
514 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
515 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
516 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
517 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
518 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
519 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
520 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
521 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
522 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
523 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
524 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
525 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
526 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
527 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
528 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
529 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
530 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
531 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
532 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
533 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
534 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
535 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
536 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
537 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
538 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
539 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
540 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
541 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
542 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
543 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
544 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
545 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
546 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
547 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
548 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
549 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
550 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
551 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
552 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
553 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
554 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
555 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
556 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
557 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
558 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
559 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
560 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
561 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
562 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
563 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
564 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
565 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
566 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
567 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
568 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
569 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
570 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
571 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
572 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
573 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
574 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
575 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
576 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
577 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
578 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
579 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
580 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
581 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
582 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
583 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
584 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
585 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
586 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
587 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
588 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
589 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
590 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
591 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
592 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
593 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
594 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
595 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
596 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
597 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
598 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
599 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
600 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
601 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
602 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
603 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
604 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
605 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
606 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
607 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
608 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
609 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
610 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
611 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
612 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
613 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
614 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
615 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
616 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
617 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
618 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
619 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
620 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
621 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
622 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
623 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
624 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
625 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
626 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
627 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
628 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
629 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
630 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
631 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
632 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
633 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
634 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
635 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
636 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
637 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
638 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
639 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
640 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
641 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
642 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
643 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
644 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
645 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
646 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
647 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
648 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
649 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
650 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
651 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
652 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
653 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
654 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
655 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
656 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
657 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
658 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
659 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
660 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
661 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
662 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
663 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
664 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
665 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
666 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
667 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
668 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
669 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
670 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
671 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
672 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
673 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
674 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
675 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
676 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
677 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00007.safetensors",
|
678 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00007.safetensors",
|
679 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00007.safetensors",
|
680 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00007.safetensors",
|
681 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
682 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
683 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
684 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
685 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
686 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
687 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
|
688 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
689 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
690 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
691 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
692 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
693 |
+
"vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00007.safetensors",
|
694 |
+
"vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00007.safetensors",
|
695 |
+
"vision_tower.vision_model.pre_layrnorm.bias": "model-00001-of-00007.safetensors",
|
696 |
+
"vision_tower.vision_model.pre_layrnorm.weight": "model-00001-of-00007.safetensors"
|
697 |
+
}
|
698 |
+
}
|
qllava3_test.py
ADDED
@@ -0,0 +1,1466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch Llava-NeXT model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
import torch.nn.functional as F
|
26 |
+
|
27 |
+
from transformers.activations import ACT2FN
|
28 |
+
from transformers.generation import GenerationMixin
|
29 |
+
from transformers.image_processing_utils import select_best_resolution
|
30 |
+
from transformers.modeling_outputs import ModelOutput
|
31 |
+
from transformers.modeling_utils import PreTrainedModel
|
32 |
+
from transformers.utils import (
|
33 |
+
add_start_docstrings,
|
34 |
+
add_start_docstrings_to_model_forward,
|
35 |
+
logging,
|
36 |
+
replace_return_docstrings,
|
37 |
+
)
|
38 |
+
from transformers.models.auto import AutoModel, AutoModelForCausalLM
|
39 |
+
from transformers.models.llava_next.configuration_llava_next import LlavaNextConfig
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
_CONFIG_FOR_DOC = "LlavaNextConfig"
|
45 |
+
from pathlib import Path
|
46 |
+
|
47 |
+
def save_list_to_incremental_file(data_list, save_dir="/common/home/users/w/wzhao/vqclip/llava_next_tensors"):
|
48 |
+
"""
|
49 |
+
将列表保存到指定目录,文件名按数字递增
|
50 |
+
|
51 |
+
Args:
|
52 |
+
data_list: 要保存的列表数据
|
53 |
+
save_dir: 保存目录路径
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
保存的文件路径
|
57 |
+
"""
|
58 |
+
# 确保目录存在
|
59 |
+
save_dir = Path(save_dir)
|
60 |
+
save_dir.mkdir(parents=True, exist_ok=True)
|
61 |
+
|
62 |
+
# 查找可用的文件名
|
63 |
+
index = 1
|
64 |
+
while True:
|
65 |
+
file_path = save_dir / f"{index}.npy"
|
66 |
+
if not file_path.exists():
|
67 |
+
break
|
68 |
+
index += 1
|
69 |
+
|
70 |
+
# 将列表转换为numpy数组并保存
|
71 |
+
np_array = np.array(data_list)
|
72 |
+
np.save(str(file_path), np_array)
|
73 |
+
|
74 |
+
return file_path
|
75 |
+
|
76 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
77 |
+
"""
|
78 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
image_size (`tuple`):
|
82 |
+
The size of the input image in the format (width, height).
|
83 |
+
grid_pinpoints (`List`):
|
84 |
+
A list containing possible resolutions. Each item in the list should be a tuple or list
|
85 |
+
of the form `(height, width)`.
|
86 |
+
patch_size (`int`):
|
87 |
+
The size of each image patch.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
91 |
+
"""
|
92 |
+
if not isinstance(grid_pinpoints, list):
|
93 |
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
94 |
+
|
95 |
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
96 |
+
if not isinstance(image_size, (list, tuple)):
|
97 |
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
98 |
+
raise TypeError(
|
99 |
+
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
100 |
+
)
|
101 |
+
image_size = image_size.tolist()
|
102 |
+
|
103 |
+
height, width = select_best_resolution(image_size, grid_pinpoints)
|
104 |
+
return height // patch_size, width // patch_size
|
105 |
+
|
106 |
+
|
107 |
+
def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
|
108 |
+
"""
|
109 |
+
Calculate the number of patches after the preprocessing for images of any resolution.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
image_size (`torch.LongTensor` or `np.ndarray` or `Tuple[int, int]`):
|
113 |
+
The size of the input image in the format (height, width). ?
|
114 |
+
grid_pinpoints (`List`):
|
115 |
+
A list containing possible resolutions. Each item in the list should be a tuple or list
|
116 |
+
of the form `(height, width)`.
|
117 |
+
patch_size (`int`):
|
118 |
+
The size of each image patch.
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
int: the number of patches
|
122 |
+
"""
|
123 |
+
if not isinstance(grid_pinpoints, list):
|
124 |
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
125 |
+
|
126 |
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
127 |
+
if not isinstance(image_size, (list, tuple)):
|
128 |
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
129 |
+
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
|
130 |
+
image_size = image_size.tolist()
|
131 |
+
|
132 |
+
best_resolution = select_best_resolution(image_size, grid_pinpoints)
|
133 |
+
height, width = best_resolution
|
134 |
+
num_patches = 0
|
135 |
+
# consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
|
136 |
+
for i in range(0, height, patch_size):
|
137 |
+
for j in range(0, width, patch_size):
|
138 |
+
num_patches += 1
|
139 |
+
# add the base patch
|
140 |
+
num_patches += 1
|
141 |
+
return num_patches
|
142 |
+
|
143 |
+
|
144 |
+
def unpad_image(tensor, original_size):
|
145 |
+
"""
|
146 |
+
Unpads a PyTorch tensor of a padded and resized image.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
tensor (`torch.Tensor`):
|
150 |
+
The image tensor, assumed to be of shape (num_channels, height, width).
|
151 |
+
original_size (`tuple`):
|
152 |
+
The original size of the image (height, width).
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
`torch.Tensor`: The unpadded image tensor.
|
156 |
+
"""
|
157 |
+
if not isinstance(original_size, (list, tuple)):
|
158 |
+
if not isinstance(original_size, (torch.Tensor, np.ndarray)):
|
159 |
+
raise TypeError(
|
160 |
+
f"image_size invalid type: {type(original_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
161 |
+
)
|
162 |
+
original_size = original_size.tolist()
|
163 |
+
original_height, original_width = original_size
|
164 |
+
current_height, current_width = tensor.shape[1:]
|
165 |
+
|
166 |
+
original_aspect_ratio = original_width / original_height
|
167 |
+
current_aspect_ratio = current_width / current_height
|
168 |
+
|
169 |
+
if original_aspect_ratio > current_aspect_ratio:
|
170 |
+
scale_factor = current_width / original_width
|
171 |
+
new_height = int(original_height * scale_factor)
|
172 |
+
padding = (current_height - new_height) // 2
|
173 |
+
unpadded_tensor = tensor[:, padding : current_height - padding, :]
|
174 |
+
else:
|
175 |
+
scale_factor = current_height / original_height
|
176 |
+
new_width = int(original_width * scale_factor)
|
177 |
+
padding = (current_width - new_width) // 2
|
178 |
+
unpadded_tensor = tensor[:, :, padding : current_width - padding]
|
179 |
+
|
180 |
+
return unpadded_tensor
|
181 |
+
|
182 |
+
|
183 |
+
@dataclass
|
184 |
+
class LlavaNextCausalLMOutputWithPast(ModelOutput):
|
185 |
+
"""
|
186 |
+
Base class for LlavaNext causal language model (or autoregressive) outputs.
|
187 |
+
|
188 |
+
Args:
|
189 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
190 |
+
Language modeling loss (for next-token prediction).
|
191 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
192 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
193 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
194 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
195 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
196 |
+
|
197 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
198 |
+
`past_key_values` input) to speed up sequential decoding.
|
199 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
200 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
201 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
202 |
+
|
203 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
204 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
205 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
206 |
+
sequence_length)`.
|
207 |
+
|
208 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
209 |
+
heads.
|
210 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
211 |
+
A `torch.FloatTensor` of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`.
|
212 |
+
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
213 |
+
"""
|
214 |
+
|
215 |
+
loss: Optional[torch.FloatTensor] = None
|
216 |
+
logits: torch.FloatTensor = None
|
217 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
218 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
219 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
220 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
221 |
+
|
222 |
+
class VectorQuantizer(nn.Module):
|
223 |
+
def __init__(self, num_embeddings: int, embedding_dim: int, commitment_cost: float = 0.25):
|
224 |
+
super().__init__()
|
225 |
+
self.num_embeddings = num_embeddings
|
226 |
+
self.embedding_dim = embedding_dim
|
227 |
+
self.commitment_cost = commitment_cost
|
228 |
+
|
229 |
+
# Embedding table
|
230 |
+
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
|
231 |
+
self.embedding.weight.data.uniform_(-1/num_embeddings, 1/num_embeddings)
|
232 |
+
|
233 |
+
def forward(self, inputs):
|
234 |
+
|
235 |
+
self.embedding.weight.data = self.embedding.weight.data.to(dtype=inputs.dtype)
|
236 |
+
# Convert inputs from BCHW -> BHWC
|
237 |
+
inputs = inputs.permute(0, 2, 1).contiguous()
|
238 |
+
input_shape = inputs.shape
|
239 |
+
|
240 |
+
# Flatten input
|
241 |
+
flat_input = inputs.view(-1, self.embedding_dim)
|
242 |
+
|
243 |
+
# Calculate distances
|
244 |
+
distances = (torch.sum(flat_input**2, dim=1, keepdim=True)
|
245 |
+
+ torch.sum(self.embedding.weight**2, dim=1)
|
246 |
+
- 2 * torch.matmul(flat_input, self.embedding.weight.t()))
|
247 |
+
|
248 |
+
# Encoding
|
249 |
+
encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1)
|
250 |
+
encodings = torch.zeros(encoding_indices.shape[0], self.num_embeddings, device=inputs.device).to(inputs.dtype)
|
251 |
+
encodings.scatter_(1, encoding_indices, 1)
|
252 |
+
#self.embedding.weight = self.embedding.weight.to(input_type)
|
253 |
+
# Quantize and unflatten
|
254 |
+
#print(inputs.dtype)
|
255 |
+
#print(self.embedding.weight.dtype)
|
256 |
+
quantized = torch.matmul(encodings, self.embedding.weight).view(input_shape)
|
257 |
+
|
258 |
+
# Loss
|
259 |
+
e_latent_loss = torch.mean((quantized.detach() - inputs)**2)
|
260 |
+
q_latent_loss = torch.mean((quantized - inputs.detach())**2)
|
261 |
+
loss = q_latent_loss + self.commitment_cost * e_latent_loss
|
262 |
+
print("this is q_latent_loss", q_latent_loss)
|
263 |
+
print("This is e_latent_loss", self.commitment_cost * e_latent_loss)
|
264 |
+
quantized = inputs + (quantized - inputs).detach()
|
265 |
+
avg_probs = torch.mean(encodings, dim=0)
|
266 |
+
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
|
267 |
+
|
268 |
+
# Convert quantized from BHWC -> BCHW
|
269 |
+
return quantized.permute(0, 2, 1).contiguous(), loss, perplexity
|
270 |
+
|
271 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->LlavaNext
|
272 |
+
class LlavaNextMultiModalProjector(nn.Module):
|
273 |
+
def __init__(self, config: LlavaNextConfig):
|
274 |
+
super().__init__()
|
275 |
+
|
276 |
+
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
277 |
+
self.act = ACT2FN[config.projector_hidden_act]
|
278 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
279 |
+
self.vq = VectorQuantizer(
|
280 |
+
num_embeddings=16000, # codebook size
|
281 |
+
embedding_dim=config.text_config.hidden_size, # dimension of each embedding vector
|
282 |
+
commitment_cost=0.5
|
283 |
+
)
|
284 |
+
self.vq_cls = VectorQuantizerCLS(
|
285 |
+
num_embeddings=128,
|
286 |
+
embedding_dim=4096,
|
287 |
+
commitment_cost=0.25,
|
288 |
+
use_cosine=True
|
289 |
+
)
|
290 |
+
def forward(self, image_features):
|
291 |
+
cls_features = image_features[: , :1]
|
292 |
+
cls_features = self.linear_1(cls_features)
|
293 |
+
cls_features = self.act(cls_features)
|
294 |
+
cls_features = self.linear_2(cls_features)
|
295 |
+
cls_features = cls_features[:, 0:]
|
296 |
+
cls_features = cls_features.mean(dim=0, keepdim=True).squeeze(0)
|
297 |
+
#save_list_to_incremental_file(cls_features.cpu().detach().numpy())
|
298 |
+
quantized, loss, perplexity, indices = self.vq_cls(cls_features)
|
299 |
+
categories = self.vq_cls.get_category_from_index(indices)
|
300 |
+
indices = indices.cpu().numpy()
|
301 |
+
print(indices)
|
302 |
+
print(categories)
|
303 |
+
if categories[0] != 0:
|
304 |
+
raise ValueError([indices, categories[0]])
|
305 |
+
#save_list_to_incremental_file(save_list)
|
306 |
+
# tensor(54)
|
307 |
+
# ['porn']
|
308 |
+
image_features = image_features[: , 1:]
|
309 |
+
hidden_states = self.linear_1(image_features)
|
310 |
+
hidden_states = self.act(hidden_states)
|
311 |
+
hidden_states = self.linear_2(hidden_states)
|
312 |
+
|
313 |
+
quantized_features, vq_loss, perplexity = self.vq(hidden_states)
|
314 |
+
print(quantized_features.shape)
|
315 |
+
return quantized_features, vq_loss
|
316 |
+
|
317 |
+
|
318 |
+
LLAVA_NEXT_START_DOCSTRING = r"""
|
319 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
320 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
321 |
+
etc.)
|
322 |
+
|
323 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
324 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
325 |
+
and behavior.
|
326 |
+
|
327 |
+
Parameters:
|
328 |
+
config ([`LlavaNextConfig`] or [`LlavaNextVisionConfig`]):
|
329 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
330 |
+
load the weights associated with the model, only the configuration. Check out the
|
331 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
332 |
+
"""
|
333 |
+
class VectorQuantizerCLS(nn.Module):
|
334 |
+
def __init__(self, num_embeddings: int = 64, embedding_dim: int = 4096, commitment_cost: float = 0.25,
|
335 |
+
codebook_path: str = None, mapping_path: str = None, use_cosine: bool = True,
|
336 |
+
randomize_indices: bool = True):
|
337 |
+
super().__init__()
|
338 |
+
self.num_embeddings = num_embeddings
|
339 |
+
self.embedding_dim = embedding_dim
|
340 |
+
self.commitment_cost = commitment_cost
|
341 |
+
self.use_cosine = use_cosine
|
342 |
+
|
343 |
+
# Embedding table
|
344 |
+
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
|
345 |
+
self.embedding.weight.data.uniform_(-1/num_embeddings, 1/num_embeddings)
|
346 |
+
|
347 |
+
# 初始化合适大小的buffer,避免加载时大小不匹配
|
348 |
+
self.register_buffer('_category_mapping_indices', torch.zeros(num_embeddings, dtype=torch.long))
|
349 |
+
self.register_buffer('_category_mapping_names', torch.zeros(num_embeddings, dtype=torch.long))
|
350 |
+
|
351 |
+
# 非持久化属性
|
352 |
+
self.center_to_category = None
|
353 |
+
|
354 |
+
# 加载预先计算的codebook
|
355 |
+
if codebook_path is not None and mapping_path is not None:
|
356 |
+
self.load_codebook(codebook_path, mapping_path, randomize_indices)
|
357 |
+
|
358 |
+
def load_codebook(self, codebook_path, mapping_path, randomize_indices=True):
|
359 |
+
"""加载预计算的codebook和类别映射,并可选择随机化索引"""
|
360 |
+
try:
|
361 |
+
# 加载codebook
|
362 |
+
print(f"Loading codebook from {codebook_path}")
|
363 |
+
centers = np.load(codebook_path)
|
364 |
+
print(f"Loaded codebook with shape: {centers.shape}")
|
365 |
+
|
366 |
+
# 加载类别映射
|
367 |
+
print(f"Loading category mappings from {mapping_path}")
|
368 |
+
with open(mapping_path, 'rb') as f:
|
369 |
+
mappings = pickle.load(f)
|
370 |
+
|
371 |
+
# 将文本类别映射为数字
|
372 |
+
category_mapping_text = mappings['category_mapping']
|
373 |
+
classes = {'neutral':0, 'porn':1, 'gun':2, 'cigarette':3, 'alcohol':4, 'knife':5, 'blood':6, 'insulting_gesture':7}
|
374 |
+
|
375 |
+
# 转换为数字映射
|
376 |
+
center_category_mapping = {}
|
377 |
+
for i, category_text in enumerate(category_mapping_text):
|
378 |
+
center_category_mapping[i] = classes.get(category_text, 0) # 默认为neutral(0)
|
379 |
+
|
380 |
+
print(f"Loaded {len(center_category_mapping)} category mappings")
|
381 |
+
|
382 |
+
# 准备数据
|
383 |
+
actual_centers = centers.shape[0]
|
384 |
+
print(f"Actual centers: {actual_centers}")
|
385 |
+
|
386 |
+
# 更新num_embeddings为实际中心点数量
|
387 |
+
self.num_embeddings = actual_centers
|
388 |
+
print(f"Setting num_embeddings to {self.num_embeddings}")
|
389 |
+
|
390 |
+
# 如果需要随机化索引,创建随机排列
|
391 |
+
if randomize_indices:
|
392 |
+
print("Randomizing codebook indices to prevent category clustering")
|
393 |
+
# 创建随机排列
|
394 |
+
permutation = list(range(actual_centers))
|
395 |
+
random.shuffle(permutation)
|
396 |
+
inverse_permutation = {v: k for k, v in enumerate(permutation)}
|
397 |
+
|
398 |
+
# 应用随机排列到中心点和类别映射
|
399 |
+
permuted_centers = np.zeros_like(centers)
|
400 |
+
permuted_categories = {}
|
401 |
+
|
402 |
+
for new_idx, old_idx in enumerate(permutation):
|
403 |
+
permuted_centers[new_idx] = centers[old_idx]
|
404 |
+
if old_idx < len(center_category_mapping):
|
405 |
+
permuted_categories[new_idx] = center_category_mapping[old_idx]
|
406 |
+
|
407 |
+
# 使用随机化后的数据
|
408 |
+
centers = permuted_centers
|
409 |
+
self.center_to_category = permuted_categories
|
410 |
+
|
411 |
+
# 打印一些随机化后的映射示例
|
412 |
+
print("Sample randomized mappings:")
|
413 |
+
for i in range(min(5, len(self.center_to_category))):
|
414 |
+
print(f" New index {i}: {self.center_to_category[i]}")
|
415 |
+
else:
|
416 |
+
# 不随机化,直接使用原始映射
|
417 |
+
self.center_to_category = {i: center_category_mapping[i]
|
418 |
+
for i in range(min(actual_centers, len(center_category_mapping)))}
|
419 |
+
|
420 |
+
# 验证类别映射是否完整
|
421 |
+
for i in range(self.num_embeddings):
|
422 |
+
if i not in self.center_to_category:
|
423 |
+
print(f"Warning: No category mapping for center {i}, setting to 0")
|
424 |
+
self.center_to_category[i] = 0 # 用0代替"unknown"
|
425 |
+
|
426 |
+
# 创建embedding数据并更新
|
427 |
+
embedding_data = torch.tensor(centers, dtype=torch.float32)
|
428 |
+
|
429 |
+
# 重新创建embedding层以匹配实际大小
|
430 |
+
self.embedding = nn.Embedding(self.num_embeddings, self.embedding_dim)
|
431 |
+
self.embedding.weight.data.copy_(embedding_data)
|
432 |
+
|
433 |
+
# 重新注册buffer以匹配新的大小
|
434 |
+
self.register_buffer('_category_mapping_indices', torch.zeros(self.num_embeddings, dtype=torch.long))
|
435 |
+
self.register_buffer('_category_mapping_names', torch.zeros(self.num_embeddings, dtype=torch.long))
|
436 |
+
|
437 |
+
# 将类别映射存储到buffer中(用于state_dict)
|
438 |
+
self._store_category_mapping()
|
439 |
+
|
440 |
+
print(f"Successfully loaded codebook with {self.num_embeddings} entries")
|
441 |
+
|
442 |
+
# 分析类别分布
|
443 |
+
category_counts = {}
|
444 |
+
for category in self.center_to_category.values():
|
445 |
+
if category in category_counts:
|
446 |
+
category_counts[category] += 1
|
447 |
+
else:
|
448 |
+
category_counts[category] = 1
|
449 |
+
|
450 |
+
print("Category distribution in codebook:")
|
451 |
+
for category, count in sorted(category_counts.items()):
|
452 |
+
print(f" {category}: {count} centers")
|
453 |
+
|
454 |
+
return True
|
455 |
+
|
456 |
+
except Exception as e:
|
457 |
+
print(f"Error loading codebook: {e}")
|
458 |
+
import traceback
|
459 |
+
traceback.print_exc()
|
460 |
+
print("Using random initialization instead")
|
461 |
+
return False
|
462 |
+
|
463 |
+
def _store_category_mapping(self):
|
464 |
+
"""将类别映射存储到模型的buffer中,以便在state_dict中保存"""
|
465 |
+
if not self.center_to_category:
|
466 |
+
warnings.warn("No category mapping to store")
|
467 |
+
return
|
468 |
+
|
469 |
+
# 获取所有类别ID
|
470 |
+
all_categories = sorted(set(self.center_to_category.values()))
|
471 |
+
|
472 |
+
# 创建索引和对应类别ID的映射
|
473 |
+
indices = list(self.center_to_category.keys())
|
474 |
+
category_ids = [self.center_to_category[idx] for idx in indices]
|
475 |
+
|
476 |
+
# 确保indices数组长度与buffer大小一致
|
477 |
+
if len(indices) != self._category_mapping_indices.size(0):
|
478 |
+
# 重新注册buffer以匹配大小
|
479 |
+
self.register_buffer('_category_mapping_indices', torch.zeros(len(indices), dtype=torch.long))
|
480 |
+
self.register_buffer('_category_mapping_names', torch.zeros(len(indices), dtype=torch.long))
|
481 |
+
|
482 |
+
# 存储到buffer中
|
483 |
+
self._category_mapping_indices.copy_(torch.tensor(indices, dtype=torch.long))
|
484 |
+
self._category_mapping_names.copy_(torch.tensor(category_ids, dtype=torch.long))
|
485 |
+
|
486 |
+
print(f"Stored category mapping with {len(indices)} entries and {len(all_categories)} unique categories")
|
487 |
+
|
488 |
+
def _load_category_mapping(self):
|
489 |
+
"""从模型的buffer恢复类别映射"""
|
490 |
+
if not hasattr(self, '_category_mapping_indices') or self._category_mapping_indices.numel() == 0:
|
491 |
+
warnings.warn("No stored category mapping found")
|
492 |
+
return {}
|
493 |
+
|
494 |
+
# 重建类别映射字典
|
495 |
+
indices = self._category_mapping_indices.tolist()
|
496 |
+
category_ids = self._category_mapping_names.tolist()
|
497 |
+
|
498 |
+
mapping = {}
|
499 |
+
for idx, cat_id in zip(indices, category_ids):
|
500 |
+
mapping[idx] = cat_id
|
501 |
+
|
502 |
+
return mapping
|
503 |
+
|
504 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
505 |
+
"""自定义state_dict加载方法,处理buffer大小不匹配的问题"""
|
506 |
+
# 检查并调整buffer大小,以匹配加载的state_dict
|
507 |
+
indices_key = prefix + '_category_mapping_indices'
|
508 |
+
names_key = prefix + '_category_mapping_names'
|
509 |
+
|
510 |
+
if indices_key in state_dict and names_key in state_dict:
|
511 |
+
indices_size = state_dict[indices_key].size()
|
512 |
+
names_size = state_dict[names_key].size()
|
513 |
+
|
514 |
+
# 重新注册buffer以匹配加载的大小
|
515 |
+
if hasattr(self, '_category_mapping_indices') and self._category_mapping_indices.size() != indices_size:
|
516 |
+
self.register_buffer('_category_mapping_indices', torch.zeros(indices_size, dtype=torch.long))
|
517 |
+
|
518 |
+
if hasattr(self, '_category_mapping_names') and self._category_mapping_names.size() != names_size:
|
519 |
+
self.register_buffer('_category_mapping_names', torch.zeros(names_size, dtype=torch.long))
|
520 |
+
|
521 |
+
# 调用父类方法加载常规参数
|
522 |
+
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
523 |
+
|
524 |
+
# 在加载完成后重建类别映射
|
525 |
+
self.center_to_category = self._load_category_mapping()
|
526 |
+
|
527 |
+
# 更新num_embeddings以匹配加载的模型
|
528 |
+
if hasattr(self, 'embedding') and hasattr(self.embedding, 'weight'):
|
529 |
+
self.num_embeddings = self.embedding.weight.size(0)
|
530 |
+
|
531 |
+
def forward(self, inputs):
|
532 |
+
"""
|
533 |
+
前向传播,专门处理(1, 4096)形状的输入
|
534 |
+
|
535 |
+
Args:
|
536 |
+
inputs: 形状为(1, 4096)的特征向量
|
537 |
+
|
538 |
+
Returns:
|
539 |
+
quantized: 量化后的特征向量
|
540 |
+
loss: 承诺损失
|
541 |
+
perplexity: 困惑度
|
542 |
+
encoding_indices: 编码索引
|
543 |
+
"""
|
544 |
+
# 验证输入形状
|
545 |
+
if inputs.shape != (1, 4096):
|
546 |
+
raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}")
|
547 |
+
|
548 |
+
# 确保embedding权重与输入使用相同的数据类型
|
549 |
+
self.embedding.weight.data = self.embedding.weight.data.to(dtype=inputs.dtype)
|
550 |
+
|
551 |
+
# 直接使用输入,不需要形状转换
|
552 |
+
flat_input = inputs
|
553 |
+
|
554 |
+
# 计算与codebook中各向量的距离
|
555 |
+
if self.use_cosine:
|
556 |
+
# 归一化向量进行余弦相似度计算
|
557 |
+
normalized_input = F.normalize(flat_input, p=2, dim=1)
|
558 |
+
normalized_weights = F.normalize(self.embedding.weight, p=2, dim=1)
|
559 |
+
|
560 |
+
# 计算余弦相似度
|
561 |
+
cosine_sim = torch.matmul(normalized_input, normalized_weights.t())
|
562 |
+
|
563 |
+
# 将相似度转换为距离(最大相似度对应最小距离)
|
564 |
+
distances = 1 - cosine_sim
|
565 |
+
else:
|
566 |
+
# 使用欧氏距离
|
567 |
+
distances = (torch.sum(flat_input**2, dim=1, keepdim=True)
|
568 |
+
+ torch.sum(self.embedding.weight**2, dim=1)
|
569 |
+
- 2 * torch.matmul(flat_input, self.embedding.weight.t()))
|
570 |
+
|
571 |
+
# 找到最近的编码向量索引
|
572 |
+
encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1)
|
573 |
+
|
574 |
+
# 创建one-hot编码
|
575 |
+
encodings = torch.zeros(encoding_indices.shape[0], self.num_embeddings, device=inputs.device).to(inputs.dtype)
|
576 |
+
encodings.scatter_(1, encoding_indices, 1)
|
577 |
+
|
578 |
+
# 量化
|
579 |
+
quantized = torch.matmul(encodings, self.embedding.weight)
|
580 |
+
|
581 |
+
# 计算损失
|
582 |
+
e_latent_loss = torch.mean((quantized.detach() - flat_input)**2)
|
583 |
+
q_latent_loss = torch.mean((quantized - flat_input.detach())**2)
|
584 |
+
loss = q_latent_loss + self.commitment_cost * e_latent_loss
|
585 |
+
|
586 |
+
print("this is q_latent_loss", q_latent_loss)
|
587 |
+
print("This is e_latent_loss", self.commitment_cost * e_latent_loss)
|
588 |
+
|
589 |
+
# Straight-through estimator
|
590 |
+
quantized = flat_input + (quantized - flat_input).detach()
|
591 |
+
|
592 |
+
# 计算perplexity
|
593 |
+
avg_probs = torch.mean(encodings, dim=0)
|
594 |
+
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
|
595 |
+
|
596 |
+
# 返回量化后的向量、损失、困惑度和索引
|
597 |
+
return quantized, loss, perplexity, encoding_indices.squeeze()
|
598 |
+
|
599 |
+
def encode(self, inputs):
|
600 |
+
"""
|
601 |
+
仅执行编码过程,返回索引
|
602 |
+
|
603 |
+
Args:
|
604 |
+
inputs: 形状为(1, 4096)的特征向量
|
605 |
+
|
606 |
+
Returns:
|
607 |
+
编码索引
|
608 |
+
"""
|
609 |
+
# 验证输入形状
|
610 |
+
if inputs.shape != (1, 4096):
|
611 |
+
raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}")
|
612 |
+
|
613 |
+
with torch.no_grad():
|
614 |
+
# 计算距离
|
615 |
+
if self.use_cosine:
|
616 |
+
normalized_input = F.normalize(inputs, p=2, dim=1)
|
617 |
+
normalized_weights = F.normalize(self.embedding.weight, p=2, dim=1)
|
618 |
+
cosine_sim = torch.matmul(normalized_input, normalized_weights.t())
|
619 |
+
distances = 1 - cosine_sim
|
620 |
+
else:
|
621 |
+
distances = (torch.sum(inputs**2, dim=1, keepdim=True)
|
622 |
+
+ torch.sum(self.embedding.weight**2, dim=1)
|
623 |
+
- 2 * torch.matmul(inputs, self.embedding.weight.t()))
|
624 |
+
|
625 |
+
# 找到最近的编码向量索引
|
626 |
+
encoding_indices = torch.argmin(distances, dim=1)
|
627 |
+
|
628 |
+
return encoding_indices
|
629 |
+
|
630 |
+
def get_category_from_index(self, indices):
|
631 |
+
"""
|
632 |
+
根据索引获取对应的类别编号
|
633 |
+
|
634 |
+
Args:
|
635 |
+
indices: 编码索引
|
636 |
+
|
637 |
+
Returns:
|
638 |
+
类别编号列表
|
639 |
+
"""
|
640 |
+
# 如果没有类别映射,尝试从buffer恢复
|
641 |
+
if self.center_to_category is None:
|
642 |
+
self.center_to_category = self._load_category_mapping()
|
643 |
+
|
644 |
+
if not self.center_to_category:
|
645 |
+
return [0] * indices.numel() # 使用0(neutral)代替"unknown"
|
646 |
+
|
647 |
+
# 将索引张量转为NumPy数组
|
648 |
+
indices_np = indices.cpu().numpy().flatten()
|
649 |
+
|
650 |
+
# 获取类别
|
651 |
+
categories = []
|
652 |
+
for idx in indices_np:
|
653 |
+
idx_int = int(idx)
|
654 |
+
category = self.center_to_category.get(idx_int, 0) # 默认为0(neutral)
|
655 |
+
categories.append(category)
|
656 |
+
|
657 |
+
return categories
|
658 |
+
|
659 |
+
def classify(self, inputs):
|
660 |
+
"""
|
661 |
+
对输入特征进行分类,返回类别编号和索引
|
662 |
+
|
663 |
+
Args:
|
664 |
+
inputs: 形状为(1, 4096)的特征向量
|
665 |
+
|
666 |
+
Returns:
|
667 |
+
categories: 预测的类别编号
|
668 |
+
indices: 编码索引
|
669 |
+
"""
|
670 |
+
# 验证输入形状
|
671 |
+
if inputs.shape != (1, 4096):
|
672 |
+
raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}")
|
673 |
+
|
674 |
+
indices = self.encode(inputs)
|
675 |
+
categories = self.get_category_from_index(indices)
|
676 |
+
return categories, indices
|
677 |
+
|
678 |
+
|
679 |
+
@add_start_docstrings(
|
680 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
681 |
+
LLAVA_NEXT_START_DOCSTRING,
|
682 |
+
)
|
683 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->LlavaNext,llava->llava_next
|
684 |
+
class LlavaNextPreTrainedModel(PreTrainedModel):
|
685 |
+
config_class = LlavaNextConfig
|
686 |
+
base_model_prefix = "model"
|
687 |
+
supports_gradient_checkpointing = True
|
688 |
+
_no_split_modules = ["LlavaNextVisionAttention"]
|
689 |
+
_skip_keys_device_placement = "past_key_values"
|
690 |
+
_supports_cache_class = True
|
691 |
+
_supports_flash_attn_2 = True
|
692 |
+
_supports_sdpa = True
|
693 |
+
|
694 |
+
def _init_weights(self, module):
|
695 |
+
# important: this ported version of LlavaNext isn't meant for training from scratch - only
|
696 |
+
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
|
697 |
+
# https://github.com/haotian-liu/LLaVA/tree/main/llava_next should serve for that purpose
|
698 |
+
std = (
|
699 |
+
self.config.initializer_range
|
700 |
+
if hasattr(self.config, "initializer_range")
|
701 |
+
else self.config.text_config.initializer_range
|
702 |
+
)
|
703 |
+
|
704 |
+
if hasattr(module, "class_embedding"):
|
705 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
706 |
+
|
707 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
708 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
709 |
+
if module.bias is not None:
|
710 |
+
module.bias.data.zero_()
|
711 |
+
elif isinstance(module, nn.Embedding):
|
712 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
713 |
+
if module.padding_idx is not None:
|
714 |
+
module.weight.data[module.padding_idx].zero_()
|
715 |
+
|
716 |
+
|
717 |
+
LLAVA_NEXT_INPUTS_DOCSTRING = r"""
|
718 |
+
Args:
|
719 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
720 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
721 |
+
it.
|
722 |
+
|
723 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
724 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
725 |
+
|
726 |
+
[What are input IDs?](../glossary#input-ids)
|
727 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
728 |
+
The tensors corresponding to the input images. Pixel values can be obtained using
|
729 |
+
[`AutoImageProcessor`]. See [`LlavaNextImageProcessor.__call__`] for details. [`LlavaProcessor`] uses
|
730 |
+
[`LlavaNextImageProcessor`] for processing images.
|
731 |
+
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
|
732 |
+
The sizes of the images in the batch, being (height, width) for each image.
|
733 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
734 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
735 |
+
|
736 |
+
- 1 for tokens that are **not masked**,
|
737 |
+
- 0 for tokens that are **masked**.
|
738 |
+
|
739 |
+
[What are attention masks?](../glossary#attention-mask)
|
740 |
+
|
741 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
742 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
743 |
+
|
744 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
745 |
+
`past_key_values`).
|
746 |
+
|
747 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
748 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
749 |
+
information on the default strategy.
|
750 |
+
|
751 |
+
- 1 indicates the head is **not masked**,
|
752 |
+
- 0 indicates the head is **masked**.
|
753 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
754 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
755 |
+
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
756 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
757 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
758 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
759 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
760 |
+
|
761 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
762 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
763 |
+
|
764 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
765 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
766 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
767 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
768 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
769 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
770 |
+
model's internal embedding lookup matrix.
|
771 |
+
vision_feature_layer (`int`, *optional*, defaults to -2):
|
772 |
+
The index of the layer to select the vision feature.
|
773 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
774 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
775 |
+
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
|
776 |
+
If `"full"`, the full vision features are used.
|
777 |
+
use_cache (`bool`, *optional*):
|
778 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
779 |
+
`past_key_values`).
|
780 |
+
output_attentions (`bool`, *optional*):
|
781 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
782 |
+
tensors for more detail.
|
783 |
+
output_hidden_states (`bool`, *optional*):
|
784 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
785 |
+
more detail.
|
786 |
+
return_dict (`bool`, *optional*):
|
787 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
788 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
789 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
790 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
791 |
+
the complete sequence length.
|
792 |
+
"""
|
793 |
+
|
794 |
+
|
795 |
+
@add_start_docstrings(
|
796 |
+
"""The LLAVA-NeXT model which consists of a vision backbone and a language model.""",
|
797 |
+
LLAVA_NEXT_START_DOCSTRING,
|
798 |
+
)
|
799 |
+
class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel, GenerationMixin):
|
800 |
+
def __init__(self, config: LlavaNextConfig):
|
801 |
+
super().__init__(config)
|
802 |
+
self.vision_tower = AutoModel.from_config(config.vision_config)
|
803 |
+
|
804 |
+
self.multi_modal_projector = LlavaNextMultiModalProjector(config)
|
805 |
+
embed_std = 1 / math.sqrt(config.text_config.hidden_size)
|
806 |
+
self.image_newline = nn.Parameter(torch.randn(config.text_config.hidden_size, dtype=self.dtype) * embed_std)
|
807 |
+
|
808 |
+
self.vocab_size = config.text_config.vocab_size
|
809 |
+
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
|
810 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
811 |
+
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
|
812 |
+
self.post_init()
|
813 |
+
|
814 |
+
@property
|
815 |
+
def padding_side(self):
|
816 |
+
return self._padding_side
|
817 |
+
|
818 |
+
@padding_side.setter
|
819 |
+
def padding_side(self, padding_side: str):
|
820 |
+
if padding_side not in ["left", "right"]:
|
821 |
+
raise ValueError(f"{padding_side} is not `left` or `right`.")
|
822 |
+
self._padding_side = padding_side
|
823 |
+
|
824 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
|
825 |
+
def get_input_embeddings(self):
|
826 |
+
return self.language_model.get_input_embeddings()
|
827 |
+
|
828 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
|
829 |
+
def set_input_embeddings(self, value):
|
830 |
+
self.language_model.set_input_embeddings(value)
|
831 |
+
|
832 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
|
833 |
+
def get_output_embeddings(self):
|
834 |
+
return self.language_model.get_output_embeddings()
|
835 |
+
|
836 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
|
837 |
+
def set_output_embeddings(self, new_embeddings):
|
838 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
839 |
+
|
840 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder
|
841 |
+
def set_decoder(self, decoder):
|
842 |
+
self.language_model.set_decoder(decoder)
|
843 |
+
|
844 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder
|
845 |
+
def get_decoder(self):
|
846 |
+
return self.language_model.get_decoder()
|
847 |
+
|
848 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights
|
849 |
+
def tie_weights(self):
|
850 |
+
return self.language_model.tie_weights()
|
851 |
+
|
852 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings
|
853 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
854 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
855 |
+
# update vocab size
|
856 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
857 |
+
self.vocab_size = model_embeds.num_embeddings
|
858 |
+
return model_embeds
|
859 |
+
|
860 |
+
def _merge_input_ids_with_image_features(
|
861 |
+
self,
|
862 |
+
image_features,
|
863 |
+
feature_lens,
|
864 |
+
inputs_embeds,
|
865 |
+
input_ids,
|
866 |
+
attention_mask,
|
867 |
+
position_ids=None,
|
868 |
+
labels=None,
|
869 |
+
image_token_index=None,
|
870 |
+
ignore_index=-100,
|
871 |
+
):
|
872 |
+
"""
|
873 |
+
Merge input_ids with with image features into final embeddings
|
874 |
+
|
875 |
+
Args:
|
876 |
+
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`):
|
877 |
+
All vision vectors of all images in the batch
|
878 |
+
feature_lens (`torch.LongTensor` of shape `(num_images)`):
|
879 |
+
The length of visual embeddings of each image as stacked in `image_features`
|
880 |
+
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
|
881 |
+
Token embeddings before merging with visual embeddings
|
882 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
883 |
+
Input_ids of tokens, possibly filled with image token
|
884 |
+
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
885 |
+
Mask to avoid performing attention on padding token indices.
|
886 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
887 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
888 |
+
config.n_positions - 1]`.
|
889 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
|
890 |
+
:abels need to be recalculated to support training (if provided)
|
891 |
+
image_token_index (`int`, *optional*)
|
892 |
+
Token id used to indicate the special "image" token. Defaults to `config.image_token_index`
|
893 |
+
ignore_index (`int`, *optional*)
|
894 |
+
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100.
|
895 |
+
Returns:
|
896 |
+
final_embedding, final_attention_mask, position_ids, final_labels
|
897 |
+
|
898 |
+
Explanation:
|
899 |
+
each image has variable length embeddings, with length specified by feature_lens
|
900 |
+
image_features is concatenation of all visual embed vectors
|
901 |
+
task: fill each <image> with the correct number of visual embeddings
|
902 |
+
Example:
|
903 |
+
X (5 patches), Y (3 patches), Z (8)
|
904 |
+
X, Y are in the same sequence (in-context learning)
|
905 |
+
if right padding
|
906 |
+
input_ids: [
|
907 |
+
a b c d e f X g h i j k Y l m
|
908 |
+
o p q r Z s t u v _ _ _ _ _ _
|
909 |
+
]
|
910 |
+
input_ids should be: [
|
911 |
+
a b c d e f X X X X X g h i j k Y Y Y l m
|
912 |
+
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
|
913 |
+
]
|
914 |
+
labels should be: [
|
915 |
+
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
|
916 |
+
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
|
917 |
+
]
|
918 |
+
elif left padding
|
919 |
+
input_ids: [
|
920 |
+
a b c d e f X g h i j k Y l m
|
921 |
+
_ _ _ _ _ _ o p q r Z s t u v
|
922 |
+
]
|
923 |
+
input_ids should be: [
|
924 |
+
a b c d e f X X X X X g h i j k Y Y Y l m
|
925 |
+
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
|
926 |
+
]
|
927 |
+
labels should be: [
|
928 |
+
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
|
929 |
+
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
|
930 |
+
]
|
931 |
+
Edge cases:
|
932 |
+
* If tokens are same but image token sizes are different, then cannot infer left or right padding
|
933 |
+
```python
|
934 |
+
cat_img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
935 |
+
chart_img = Image.open(requests.get("https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true", stream=True).raw)
|
936 |
+
prompts = [
|
937 |
+
"[INST] <image>\nWhat is shown in this image? [/INST]",
|
938 |
+
"[INST] <image>\nWhat is shown in this image? [/INST]",
|
939 |
+
]
|
940 |
+
inputs = processor(prompts, [chart_img, cat_img], return_tensors='pt', padding=True).to("cuda")
|
941 |
+
chart_img has 2634 tokens, while cat_img has 2340 tokens
|
942 |
+
```
|
943 |
+
|
944 |
+
input_ids: [
|
945 |
+
a b c d X g h
|
946 |
+
i j Y k l m n
|
947 |
+
]
|
948 |
+
where X is 3 tokens while Y is 5, this mean after merge
|
949 |
+
if left-padding (batched generation)
|
950 |
+
input_ids should be: [
|
951 |
+
_ _ a b c d X X X g h
|
952 |
+
i j Y Y Y Y Y k l m n
|
953 |
+
]
|
954 |
+
elif (right padding) (training)
|
955 |
+
input_ids should be: [
|
956 |
+
a b c d X X X g h _ _
|
957 |
+
i j Y Y Y Y Y k l m n
|
958 |
+
]
|
959 |
+
"""
|
960 |
+
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index
|
961 |
+
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index
|
962 |
+
|
963 |
+
if self.training and self.padding_side == "left":
|
964 |
+
logger.warning_once(
|
965 |
+
"Padding side is set to 'left' but the model is in training mode. For training "
|
966 |
+
"it is recommended to set `model.padding_side='right' and `processor.tokenizer.padding_side='right'`. "
|
967 |
+
"If that's intended, ignore this warning"
|
968 |
+
)
|
969 |
+
if not self.training and self.padding_side == "right":
|
970 |
+
logger.warning_once(
|
971 |
+
"Padding side is set to 'right' but the model is in inference mode. For correct "
|
972 |
+
"generation results, please set `model.padding_side='left'` and `processor.tokenizer.padding_side='left'`. "
|
973 |
+
"If that's intended, ignore this warning"
|
974 |
+
)
|
975 |
+
|
976 |
+
with torch.no_grad():
|
977 |
+
# ! in llava 1.6, number of patches is variable
|
978 |
+
num_images = feature_lens.size(0)
|
979 |
+
num_image_features, embed_dim = image_features.shape
|
980 |
+
if feature_lens.sum() != num_image_features:
|
981 |
+
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}")
|
982 |
+
batch_size = input_ids.shape[0]
|
983 |
+
_left_padding = torch.any(attention_mask[:, 0] == 0)
|
984 |
+
_right_padding = torch.any(attention_mask[:, -1] == 0)
|
985 |
+
|
986 |
+
left_padding = self.padding_side == "left"
|
987 |
+
if batch_size > 1:
|
988 |
+
if _left_padding and _right_padding:
|
989 |
+
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
|
990 |
+
elif _right_padding and left_padding:
|
991 |
+
left_padding = False
|
992 |
+
elif _left_padding and not left_padding:
|
993 |
+
left_padding = True
|
994 |
+
|
995 |
+
# Whether to turn off right padding
|
996 |
+
# 1. Create a mask to know where special image tokens are
|
997 |
+
special_image_token_mask = input_ids == image_token_index
|
998 |
+
# special_image_token_mask: [bsz, seqlen]
|
999 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
1000 |
+
# num_special_image_tokens: [bsz]
|
1001 |
+
# Reserve for padding of num_images
|
1002 |
+
total_num_special_image_tokens = torch.sum(special_image_token_mask)
|
1003 |
+
if total_num_special_image_tokens != num_images:
|
1004 |
+
raise ValueError(
|
1005 |
+
f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})."
|
1006 |
+
)
|
1007 |
+
# Compute the maximum embed dimension
|
1008 |
+
# max_image_feature_lens is max_feature_lens per batch
|
1009 |
+
feature_lens = feature_lens.to(input_ids.device)
|
1010 |
+
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
|
1011 |
+
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device)
|
1012 |
+
embed_sequence_lengths = (
|
1013 |
+
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
|
1014 |
+
)
|
1015 |
+
max_embed_dim = embed_sequence_lengths.max()
|
1016 |
+
|
1017 |
+
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1))
|
1018 |
+
# 2. Compute the positions where text should be written
|
1019 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
1020 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens.
|
1021 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
1022 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
1023 |
+
# ! instead of special_image_token_mask * (num_image_patches - 1)
|
1024 |
+
# special_image_token_mask * (num_feature_len - 1)
|
1025 |
+
special_image_token_mask = special_image_token_mask.long()
|
1026 |
+
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1
|
1027 |
+
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1
|
1028 |
+
if left_padding:
|
1029 |
+
# shift right token positions so that they are ending at the same number
|
1030 |
+
# the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:]
|
1031 |
+
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:]
|
1032 |
+
|
1033 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
1034 |
+
|
1035 |
+
# 3. Create the full embedding, already padded to the maximum position
|
1036 |
+
final_embedding = torch.zeros(
|
1037 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
1038 |
+
)
|
1039 |
+
final_attention_mask = torch.zeros(
|
1040 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
1041 |
+
)
|
1042 |
+
final_input_ids = torch.full(
|
1043 |
+
(batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device
|
1044 |
+
)
|
1045 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
1046 |
+
# set the corresponding tensors into their correct target device.
|
1047 |
+
target_device = inputs_embeds.device
|
1048 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
1049 |
+
batch_indices.to(target_device),
|
1050 |
+
non_image_indices.to(target_device),
|
1051 |
+
text_to_overwrite.to(target_device),
|
1052 |
+
)
|
1053 |
+
attention_mask = attention_mask.to(target_device)
|
1054 |
+
input_ids = input_ids.to(target_device)
|
1055 |
+
|
1056 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
1057 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
1058 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
1059 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
1060 |
+
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices]
|
1061 |
+
final_labels = None
|
1062 |
+
if labels is not None:
|
1063 |
+
labels = labels.to(target_device)
|
1064 |
+
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long)
|
1065 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
|
1066 |
+
|
1067 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
|
1068 |
+
with torch.no_grad():
|
1069 |
+
image_to_overwrite = torch.full(
|
1070 |
+
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
1071 |
+
)
|
1072 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = False
|
1073 |
+
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device)
|
1074 |
+
embed_indices = embed_indices.expand(batch_size, max_embed_dim)
|
1075 |
+
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device)
|
1076 |
+
|
1077 |
+
if left_padding:
|
1078 |
+
# exclude padding on the left
|
1079 |
+
max_embed_dim = max_embed_dim.to(target_device)
|
1080 |
+
val = (max_embed_dim - embed_indices) <= embed_seq_lens
|
1081 |
+
else:
|
1082 |
+
# exclude padding on the right
|
1083 |
+
val = embed_indices < embed_seq_lens
|
1084 |
+
image_to_overwrite &= val
|
1085 |
+
|
1086 |
+
if image_to_overwrite.sum() != num_image_features:
|
1087 |
+
raise ValueError(
|
1088 |
+
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. "
|
1089 |
+
f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
1090 |
+
f" the number of image given to the model is {num_images}. "
|
1091 |
+
f"This prevents correct indexing and breaks batch generation."
|
1092 |
+
)
|
1093 |
+
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
1094 |
+
final_attention_mask |= image_to_overwrite
|
1095 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
1096 |
+
|
1097 |
+
return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids
|
1098 |
+
|
1099 |
+
def pack_image_features(self, image_features, image_sizes, vision_feature_select_strategy, image_newline=None):
|
1100 |
+
"""
|
1101 |
+
Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors.
|
1102 |
+
|
1103 |
+
Args:
|
1104 |
+
image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`)
|
1105 |
+
List of image feature tensor, each contains all the visual feature of all patches.
|
1106 |
+
image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
|
1107 |
+
Actual image size of each images (H, W).
|
1108 |
+
vision_feature_select_strategy (`str`)
|
1109 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
1110 |
+
image_newline (`torch.Tensor` of shape `(embed_dim)`)
|
1111 |
+
New line embedding vector.
|
1112 |
+
Returns:
|
1113 |
+
image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`)
|
1114 |
+
feature_lens (`List[int]`)
|
1115 |
+
token length of each image in image_features
|
1116 |
+
"""
|
1117 |
+
new_image_features = []
|
1118 |
+
feature_lens = []
|
1119 |
+
for image_idx, image_feature in enumerate(image_features):
|
1120 |
+
if image_feature.shape[0] > 1:
|
1121 |
+
base_image_feature = image_feature[0]
|
1122 |
+
image_feature = image_feature[1:]
|
1123 |
+
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
|
1124 |
+
|
1125 |
+
if vision_feature_select_strategy == "default":
|
1126 |
+
expected_num_patches = height * width
|
1127 |
+
elif vision_feature_select_strategy == "full":
|
1128 |
+
expected_num_patches = height * width + 1
|
1129 |
+
if expected_num_patches != base_image_feature.shape[0]:
|
1130 |
+
raise ValueError("The number of patches is not consistent with the image size.")
|
1131 |
+
|
1132 |
+
num_patch_height, num_patch_width = get_anyres_image_grid_shape(
|
1133 |
+
image_sizes[image_idx],
|
1134 |
+
self.config.image_grid_pinpoints,
|
1135 |
+
self.config.vision_config.image_size,
|
1136 |
+
)
|
1137 |
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
1138 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
1139 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
1140 |
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
1141 |
+
if image_newline is not None:
|
1142 |
+
image_feature = torch.cat(
|
1143 |
+
(
|
1144 |
+
image_feature,
|
1145 |
+
image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.dtype),
|
1146 |
+
),
|
1147 |
+
dim=-1,
|
1148 |
+
)
|
1149 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
1150 |
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
1151 |
+
else:
|
1152 |
+
image_feature = image_feature[0]
|
1153 |
+
if image_newline is not None:
|
1154 |
+
image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
|
1155 |
+
new_image_features.append(image_feature)
|
1156 |
+
feature_lens.append(image_feature.size(0))
|
1157 |
+
image_features = torch.cat(new_image_features, dim=0)
|
1158 |
+
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
|
1159 |
+
return image_features, feature_lens
|
1160 |
+
|
1161 |
+
def get_image_features(
|
1162 |
+
self,
|
1163 |
+
pixel_values: torch.FloatTensor,
|
1164 |
+
image_sizes: torch.Tensor,
|
1165 |
+
vision_feature_layer: int,
|
1166 |
+
vision_feature_select_strategy: str,
|
1167 |
+
):
|
1168 |
+
"""
|
1169 |
+
Obtains image last hidden states from the vision tower and apply multimodal projection.
|
1170 |
+
|
1171 |
+
Args:
|
1172 |
+
pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_patches, channels, height, width)`)
|
1173 |
+
The tensors corresponding to the input images.
|
1174 |
+
image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
|
1175 |
+
Actual image size of each images (H, W).
|
1176 |
+
vision_feature_layer (`int`):
|
1177 |
+
The index of the layer to select the vision feature.
|
1178 |
+
vision_feature_select_strategy (`str`):
|
1179 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
1180 |
+
Can be one of `"default"` or `"full"`
|
1181 |
+
Returns:
|
1182 |
+
image_features (List[`torch.Tensor`]): List of image feature tensor, each contains all the visual feature of all patches
|
1183 |
+
and are of shape `(num_patches, image_length, embed_dim)`).
|
1184 |
+
"""
|
1185 |
+
# ! infer image_num_patches from image_sizes
|
1186 |
+
image_num_patches = [
|
1187 |
+
image_size_to_num_patches(
|
1188 |
+
image_size=imsize,
|
1189 |
+
grid_pinpoints=self.config.image_grid_pinpoints,
|
1190 |
+
patch_size=self.config.vision_config.image_size,
|
1191 |
+
)
|
1192 |
+
for imsize in image_sizes
|
1193 |
+
]
|
1194 |
+
if pixel_values.dim() == 5:
|
1195 |
+
# stacked if input is (batch_size, num_patches, num_channels, height, width)
|
1196 |
+
_pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)]
|
1197 |
+
pixel_values = torch.cat(_pixel_values_list, dim=0)
|
1198 |
+
elif pixel_values.dim() != 4:
|
1199 |
+
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
|
1200 |
+
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
|
1201 |
+
|
1202 |
+
image_features = self.vision_tower(pixel_values, output_hidden_states=True)
|
1203 |
+
selected_image_feature = image_features.hidden_states[vision_feature_layer]
|
1204 |
+
if vision_feature_select_strategy == "default":
|
1205 |
+
# selected_image_feature = selected_image_feature[:, 1:]
|
1206 |
+
# elif vision_feature_select_strategy == "full":
|
1207 |
+
selected_image_feature = selected_image_feature
|
1208 |
+
image_features, vq_loss = self.multi_modal_projector(selected_image_feature)
|
1209 |
+
image_features = torch.split(image_features, image_num_patches, dim=0)
|
1210 |
+
|
1211 |
+
|
1212 |
+
return image_features, vq_loss
|
1213 |
+
|
1214 |
+
@add_start_docstrings_to_model_forward(LLAVA_NEXT_INPUTS_DOCSTRING)
|
1215 |
+
@replace_return_docstrings(output_type=LlavaNextCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1216 |
+
def forward(
|
1217 |
+
self,
|
1218 |
+
input_ids: torch.LongTensor = None,
|
1219 |
+
pixel_values: torch.FloatTensor = None,
|
1220 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
1221 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1222 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1223 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1224 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1225 |
+
vision_feature_layer: Optional[int] = None,
|
1226 |
+
vision_feature_select_strategy: Optional[str] = None,
|
1227 |
+
labels: Optional[torch.LongTensor] = None,
|
1228 |
+
use_cache: Optional[bool] = None,
|
1229 |
+
output_attentions: Optional[bool] = None,
|
1230 |
+
output_hidden_states: Optional[bool] = None,
|
1231 |
+
return_dict: Optional[bool] = None,
|
1232 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1233 |
+
num_logits_to_keep: int = 0,
|
1234 |
+
) -> Union[Tuple, LlavaNextCausalLMOutputWithPast]:
|
1235 |
+
r"""
|
1236 |
+
Args:
|
1237 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1238 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1239 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1240 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1241 |
+
|
1242 |
+
num_logits_to_keep (`int`, *optional*):
|
1243 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
1244 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
1245 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
1246 |
+
|
1247 |
+
Returns:
|
1248 |
+
|
1249 |
+
Example:
|
1250 |
+
|
1251 |
+
```python
|
1252 |
+
>>> from PIL import Image
|
1253 |
+
>>> import requests
|
1254 |
+
>>> from transformers import AutoProcessor, LlavaNextForConditionalGeneration
|
1255 |
+
|
1256 |
+
>>> model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
1257 |
+
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
1258 |
+
|
1259 |
+
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
|
1260 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
1261 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1262 |
+
|
1263 |
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
|
1264 |
+
|
1265 |
+
>>> # Generate
|
1266 |
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
1267 |
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1268 |
+
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
|
1269 |
+
```"""
|
1270 |
+
|
1271 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1272 |
+
output_hidden_states = (
|
1273 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1274 |
+
)
|
1275 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1276 |
+
vision_feature_layer = (
|
1277 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
1278 |
+
)
|
1279 |
+
vision_feature_select_strategy = (
|
1280 |
+
vision_feature_select_strategy
|
1281 |
+
if vision_feature_select_strategy is not None
|
1282 |
+
else self.config.vision_feature_select_strategy
|
1283 |
+
)
|
1284 |
+
|
1285 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1286 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
1287 |
+
|
1288 |
+
if pixel_values is not None and inputs_embeds is not None:
|
1289 |
+
raise ValueError(
|
1290 |
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
1291 |
+
)
|
1292 |
+
|
1293 |
+
legacy_processing = False
|
1294 |
+
if inputs_embeds is None:
|
1295 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
1296 |
+
|
1297 |
+
# if the number of image tokens is more than image embeddings seq length, then prob we expanded it in processing
|
1298 |
+
# not very reliable, but we don't expect one to actually pass 500+ images for one prompt
|
1299 |
+
# In case we're in decoding stage, legacy behavior is checked by presence of pixel values even if use_cache=True
|
1300 |
+
legacy_processing = (
|
1301 |
+
(input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length
|
1302 |
+
) or (input_ids.shape[-1] == 1 and pixel_values is not None)
|
1303 |
+
|
1304 |
+
image_features = None
|
1305 |
+
if pixel_values is not None and pixel_values.size(0) > 0:
|
1306 |
+
image_features, vq_loss = self.get_image_features(
|
1307 |
+
pixel_values,
|
1308 |
+
image_sizes,
|
1309 |
+
vision_feature_layer=vision_feature_layer,
|
1310 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
1311 |
+
)
|
1312 |
+
|
1313 |
+
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
|
1314 |
+
image_features, feature_lens = self.pack_image_features(
|
1315 |
+
image_features,
|
1316 |
+
image_sizes,
|
1317 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
1318 |
+
image_newline=self.image_newline,
|
1319 |
+
)
|
1320 |
+
|
1321 |
+
if legacy_processing:
|
1322 |
+
logger.warning_once(
|
1323 |
+
"Expanding inputs for image tokens in LLaVa-NeXT should be done in processing. "
|
1324 |
+
"Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly "
|
1325 |
+
"with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. "
|
1326 |
+
"Using processors without these attributes in the config is deprecated and will throw an error in v4.47."
|
1327 |
+
)
|
1328 |
+
if input_ids.shape[1] != 1:
|
1329 |
+
inputs_embeds = inputs_embeds.to(image_features.dtype)
|
1330 |
+
inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features(
|
1331 |
+
image_features,
|
1332 |
+
feature_lens,
|
1333 |
+
inputs_embeds,
|
1334 |
+
input_ids,
|
1335 |
+
attention_mask,
|
1336 |
+
position_ids,
|
1337 |
+
labels=labels,
|
1338 |
+
)
|
1339 |
+
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)
|
1340 |
+
else:
|
1341 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
1342 |
+
# that are set to 0
|
1343 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
1344 |
+
|
1345 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
1346 |
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
1347 |
+
|
1348 |
+
# Get the target length
|
1349 |
+
target_length = input_ids.shape[1]
|
1350 |
+
past_length = first_layer_past_key_value.shape[-1]
|
1351 |
+
|
1352 |
+
extended_attention_mask = torch.ones(
|
1353 |
+
(attention_mask.shape[0], past_length),
|
1354 |
+
dtype=attention_mask.dtype,
|
1355 |
+
device=attention_mask.device,
|
1356 |
+
)
|
1357 |
+
|
1358 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
1359 |
+
# if one uses Llava + Fused modules where the cache on the
|
1360 |
+
# first iteration is already big enough, or if one passes custom cache
|
1361 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
1362 |
+
new_batch_index = batch_index[valid_indices]
|
1363 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
1364 |
+
|
1365 |
+
# Zero-out the places where we don't need to attend
|
1366 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
1367 |
+
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
|
1368 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
1369 |
+
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[-target_length:]
|
1370 |
+
|
1371 |
+
# TODO: @raushan retain only the new behavior after v4.47
|
1372 |
+
elif image_features is not None:
|
1373 |
+
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
|
1374 |
+
n_image_features = image_features.shape[0]
|
1375 |
+
if n_image_tokens != n_image_features:
|
1376 |
+
raise ValueError(
|
1377 |
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
1378 |
+
)
|
1379 |
+
special_image_mask = (
|
1380 |
+
(input_ids == self.config.image_token_index)
|
1381 |
+
.unsqueeze(-1)
|
1382 |
+
.expand_as(inputs_embeds)
|
1383 |
+
.to(inputs_embeds.device)
|
1384 |
+
)
|
1385 |
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
1386 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
1387 |
+
|
1388 |
+
outputs = self.language_model(
|
1389 |
+
attention_mask=attention_mask,
|
1390 |
+
position_ids=position_ids,
|
1391 |
+
past_key_values=past_key_values,
|
1392 |
+
inputs_embeds=inputs_embeds,
|
1393 |
+
use_cache=use_cache,
|
1394 |
+
output_attentions=output_attentions,
|
1395 |
+
output_hidden_states=output_hidden_states,
|
1396 |
+
return_dict=return_dict,
|
1397 |
+
cache_position=cache_position,
|
1398 |
+
num_logits_to_keep=num_logits_to_keep,
|
1399 |
+
)
|
1400 |
+
|
1401 |
+
logits = outputs[0]
|
1402 |
+
|
1403 |
+
loss = None
|
1404 |
+
if labels is not None:
|
1405 |
+
# Shift so that tokens < n predict n
|
1406 |
+
if attention_mask is not None:
|
1407 |
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
1408 |
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
1409 |
+
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
|
1410 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
1411 |
+
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
1412 |
+
else:
|
1413 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1414 |
+
shift_labels = labels[..., 1:].contiguous()
|
1415 |
+
# Flatten the tokens
|
1416 |
+
loss_fct = nn.CrossEntropyLoss()
|
1417 |
+
loss = loss_fct(
|
1418 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
1419 |
+
)
|
1420 |
+
print("This is original loss",loss)
|
1421 |
+
#vq_loss = vq_loss.to(loss.device)
|
1422 |
+
loss = loss
|
1423 |
+
if not return_dict:
|
1424 |
+
output = (logits,) + outputs[1:]
|
1425 |
+
return (loss,) + output if loss is not None else output
|
1426 |
+
|
1427 |
+
return LlavaNextCausalLMOutputWithPast(
|
1428 |
+
loss=loss,
|
1429 |
+
logits=logits,
|
1430 |
+
past_key_values=outputs.past_key_values,
|
1431 |
+
hidden_states=outputs.hidden_states,
|
1432 |
+
attentions=outputs.attentions,
|
1433 |
+
image_hidden_states=image_features if pixel_values is not None else None,
|
1434 |
+
)
|
1435 |
+
|
1436 |
+
def prepare_inputs_for_generation(
|
1437 |
+
self,
|
1438 |
+
input_ids,
|
1439 |
+
past_key_values=None,
|
1440 |
+
inputs_embeds=None,
|
1441 |
+
pixel_values=None,
|
1442 |
+
image_sizes=None,
|
1443 |
+
attention_mask=None,
|
1444 |
+
cache_position=None,
|
1445 |
+
num_logits_to_keep=None,
|
1446 |
+
**kwargs,
|
1447 |
+
):
|
1448 |
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
1449 |
+
|
1450 |
+
model_inputs = self.language_model.prepare_inputs_for_generation(
|
1451 |
+
input_ids,
|
1452 |
+
past_key_values=past_key_values,
|
1453 |
+
inputs_embeds=inputs_embeds,
|
1454 |
+
attention_mask=attention_mask,
|
1455 |
+
cache_position=cache_position,
|
1456 |
+
num_logits_to_keep=num_logits_to_keep,
|
1457 |
+
**kwargs,
|
1458 |
+
)
|
1459 |
+
|
1460 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
1461 |
+
# Otherwise we need pixel values to be passed to model
|
1462 |
+
if cache_position[0] == 0:
|
1463 |
+
model_inputs["pixel_values"] = pixel_values
|
1464 |
+
model_inputs["image_sizes"] = image_sizes
|
1465 |
+
|
1466 |
+
return model_inputs
|
test_on_new_qllava.ipynb
ADDED
@@ -0,0 +1,2264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from huggingface_hub import HfApi\n",
|
10 |
+
"from huggingface_hub import HfApi\n",
|
11 |
+
"api = HfApi()\n",
|
12 |
+
"# 替换为你的用户名/仓库名\n",
|
13 |
+
"repo_id = \"vincentchao/qllava-next\"\n",
|
14 |
+
"# # 创建仓库(如果还不存在)\n",
|
15 |
+
"api.create_repo(repo_id, repo_type=\"model\", private=False)\n",
|
16 |
+
"\n",
|
17 |
+
"# 上传整个目录\n",
|
18 |
+
"api.upload_folder(\n",
|
19 |
+
" folder_path=\"/common/home/users/w/wzhao/vqclip/qllava_next_newest\",\n",
|
20 |
+
" repo_id=repo_id,\n",
|
21 |
+
" repo_type=\"model\"\n",
|
22 |
+
")"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 1,
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"classes2id = { 'neutral':0, 'porn':1,'gun':2,'cigarette':3,'alcohol':4, 'knife':5,'blood':6,'insulting_gesture':7}\n",
|
32 |
+
"id2class = ['neutral','porn','gun','cigarette','alcohol',\"knife\",'blood','insulting_gesture']"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 2,
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [
|
40 |
+
{
|
41 |
+
"data": {
|
42 |
+
"application/vnd.jupyter.widget-view+json": {
|
43 |
+
"model_id": "56dbb817e0a24197b2749a8ff82fe593",
|
44 |
+
"version_major": 2,
|
45 |
+
"version_minor": 0
|
46 |
+
},
|
47 |
+
"text/plain": [
|
48 |
+
"Loading checkpoint shards: 0%| | 0/7 [00:00<?, ?it/s]"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
"metadata": {},
|
52 |
+
"output_type": "display_data"
|
53 |
+
}
|
54 |
+
],
|
55 |
+
"source": [
|
56 |
+
"from transformers import LlavaProcessor\n",
|
57 |
+
"import torch\n",
|
58 |
+
"import logging\n",
|
59 |
+
"from transformers import TrainerCallback\n",
|
60 |
+
"\n",
|
61 |
+
"import datetime\n",
|
62 |
+
"import os\n",
|
63 |
+
"#os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\" # 只显示第一个GPU设备\n",
|
64 |
+
"import torch # 或 tensorflow 等\n",
|
65 |
+
"import torch.nn as nn\n",
|
66 |
+
"import os\n",
|
67 |
+
"import torch.distributed as dist\n",
|
68 |
+
"from transformers import LlavaProcessor\n",
|
69 |
+
"from qllava3_test import LlavaNextForConditionalGeneration\n",
|
70 |
+
"# %%\n",
|
71 |
+
"model_id = \"/common/public/llava/llama3-llava-next-8b-hf\"\n",
|
72 |
+
"processor = LlavaProcessor.from_pretrained(\n",
|
73 |
+
" model_id ,\n",
|
74 |
+
")\n",
|
75 |
+
"\n",
|
76 |
+
"# 加载模型\n",
|
77 |
+
"model = LlavaNextForConditionalGeneration.from_pretrained(\n",
|
78 |
+
" \"/common/home/users/w/wzhao/vqclip/qllava_next_newest\", \n",
|
79 |
+
" #\"/common/home/users/w/wzhao/qllava/vqllava/checkpoint-260\",\n",
|
80 |
+
" # \"/common/home/users/w/wzhao/\"+path + \"/checkpoint-5000\",\n",
|
81 |
+
" torch_dtype=torch.float32, # 仍然使用float16以节省内存\n",
|
82 |
+
").cuda()"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": null,
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [],
|
90 |
+
"source": []
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": null,
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [
|
97 |
+
{
|
98 |
+
"name": "stderr",
|
99 |
+
"output_type": "stream",
|
100 |
+
"text": [
|
101 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
102 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"name": "stdout",
|
107 |
+
"output_type": "stream",
|
108 |
+
"text": [
|
109 |
+
"Total images to process: 21213\n",
|
110 |
+
"Processing folder: /common/home/users/w/wzhao/llava_helper/nsfw_dataset_v1/porn/train (Category: porn)\n",
|
111 |
+
"this is q_latent_loss tensor(8.8170, device='cuda:0')\n",
|
112 |
+
"This is e_latent_loss tensor(2.2042, device='cuda:0')\n",
|
113 |
+
"57\n",
|
114 |
+
"[0]\n"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"name": "stderr",
|
119 |
+
"output_type": "stream",
|
120 |
+
"text": [
|
121 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
122 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"name": "stdout",
|
127 |
+
"output_type": "stream",
|
128 |
+
"text": [
|
129 |
+
"this is q_latent_loss tensor(11.6122, device='cuda:0')\n",
|
130 |
+
"This is e_latent_loss tensor(2.9030, device='cuda:0')\n",
|
131 |
+
"57\n",
|
132 |
+
"[0]\n",
|
133 |
+
"this is q_latent_loss tensor(9.9424, device='cuda:0')\n",
|
134 |
+
"This is e_latent_loss tensor(2.4856, device='cuda:0')\n",
|
135 |
+
"57\n",
|
136 |
+
"[0]\n",
|
137 |
+
"this is q_latent_loss tensor(11.4321, device='cuda:0')\n",
|
138 |
+
"This is e_latent_loss tensor(2.8580, device='cuda:0')\n",
|
139 |
+
"57\n",
|
140 |
+
"[0]\n"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"name": "stderr",
|
145 |
+
"output_type": "stream",
|
146 |
+
"text": [
|
147 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
148 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
149 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"name": "stdout",
|
154 |
+
"output_type": "stream",
|
155 |
+
"text": [
|
156 |
+
"this is q_latent_loss tensor(8.0276, device='cuda:0')\n",
|
157 |
+
"This is e_latent_loss tensor(2.0069, device='cuda:0')\n",
|
158 |
+
"57\n",
|
159 |
+
"[0]\n",
|
160 |
+
"this is q_latent_loss tensor(8.3328, device='cuda:0')\n",
|
161 |
+
"This is e_latent_loss tensor(2.0832, device='cuda:0')\n",
|
162 |
+
"57\n",
|
163 |
+
"[0]\n",
|
164 |
+
"this is q_latent_loss tensor(7.4713, device='cuda:0')\n",
|
165 |
+
"This is e_latent_loss tensor(1.8678, device='cuda:0')\n",
|
166 |
+
"57\n",
|
167 |
+
"[0]\n"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"name": "stderr",
|
172 |
+
"output_type": "stream",
|
173 |
+
"text": [
|
174 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
175 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
176 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"name": "stdout",
|
181 |
+
"output_type": "stream",
|
182 |
+
"text": [
|
183 |
+
"this is q_latent_loss tensor(9.5524, device='cuda:0')\n",
|
184 |
+
"This is e_latent_loss tensor(2.3881, device='cuda:0')\n",
|
185 |
+
"57\n",
|
186 |
+
"[0]\n",
|
187 |
+
"this is q_latent_loss tensor(10.4501, device='cuda:0')\n",
|
188 |
+
"This is e_latent_loss tensor(2.6125, device='cuda:0')\n",
|
189 |
+
"57\n",
|
190 |
+
"[0]\n",
|
191 |
+
"this is q_latent_loss tensor(7.5718, device='cuda:0')\n",
|
192 |
+
"This is e_latent_loss tensor(1.8930, device='cuda:0')\n",
|
193 |
+
"57\n",
|
194 |
+
"[0]\n",
|
195 |
+
"Processed 10/21213 images\n"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"name": "stderr",
|
200 |
+
"output_type": "stream",
|
201 |
+
"text": [
|
202 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
203 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
204 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"name": "stdout",
|
209 |
+
"output_type": "stream",
|
210 |
+
"text": [
|
211 |
+
"this is q_latent_loss tensor(8.9837, device='cuda:0')\n",
|
212 |
+
"This is e_latent_loss tensor(2.2459, device='cuda:0')\n",
|
213 |
+
"57\n",
|
214 |
+
"[0]\n",
|
215 |
+
"this is q_latent_loss tensor(9.0015, device='cuda:0')\n",
|
216 |
+
"This is e_latent_loss tensor(2.2504, device='cuda:0')\n",
|
217 |
+
"57\n",
|
218 |
+
"[0]\n",
|
219 |
+
"this is q_latent_loss tensor(11.5371, device='cuda:0')\n",
|
220 |
+
"This is e_latent_loss tensor(2.8843, device='cuda:0')\n",
|
221 |
+
"57\n",
|
222 |
+
"[0]\n"
|
223 |
+
]
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"name": "stderr",
|
227 |
+
"output_type": "stream",
|
228 |
+
"text": [
|
229 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
230 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
231 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"name": "stdout",
|
236 |
+
"output_type": "stream",
|
237 |
+
"text": [
|
238 |
+
"this is q_latent_loss tensor(8.5971, device='cuda:0')\n",
|
239 |
+
"This is e_latent_loss tensor(2.1493, device='cuda:0')\n",
|
240 |
+
"57\n",
|
241 |
+
"[0]\n",
|
242 |
+
"this is q_latent_loss tensor(10.3564, device='cuda:0')\n",
|
243 |
+
"This is e_latent_loss tensor(2.5891, device='cuda:0')\n",
|
244 |
+
"57\n",
|
245 |
+
"[0]\n",
|
246 |
+
"this is q_latent_loss tensor(10.8574, device='cuda:0')\n",
|
247 |
+
"This is e_latent_loss tensor(2.7143, device='cuda:0')\n",
|
248 |
+
"57\n",
|
249 |
+
"[0]\n"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"name": "stderr",
|
254 |
+
"output_type": "stream",
|
255 |
+
"text": [
|
256 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
257 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
258 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"name": "stdout",
|
263 |
+
"output_type": "stream",
|
264 |
+
"text": [
|
265 |
+
"this is q_latent_loss tensor(10.5497, device='cuda:0')\n",
|
266 |
+
"This is e_latent_loss tensor(2.6374, device='cuda:0')\n",
|
267 |
+
"57\n",
|
268 |
+
"[0]\n",
|
269 |
+
"this is q_latent_loss tensor(9.1719, device='cuda:0')\n",
|
270 |
+
"This is e_latent_loss tensor(2.2930, device='cuda:0')\n",
|
271 |
+
"57\n",
|
272 |
+
"[0]\n",
|
273 |
+
"this is q_latent_loss tensor(7.7135, device='cuda:0')\n",
|
274 |
+
"This is e_latent_loss tensor(1.9284, device='cuda:0')\n",
|
275 |
+
"57\n",
|
276 |
+
"[0]\n"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"name": "stderr",
|
281 |
+
"output_type": "stream",
|
282 |
+
"text": [
|
283 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
284 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
285 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"name": "stdout",
|
290 |
+
"output_type": "stream",
|
291 |
+
"text": [
|
292 |
+
"this is q_latent_loss tensor(7.7845, device='cuda:0')\n",
|
293 |
+
"This is e_latent_loss tensor(1.9461, device='cuda:0')\n",
|
294 |
+
"57\n",
|
295 |
+
"[0]\n",
|
296 |
+
"Processed 20/21213 images\n",
|
297 |
+
"this is q_latent_loss tensor(7.4899, device='cuda:0')\n",
|
298 |
+
"This is e_latent_loss tensor(1.8725, device='cuda:0')\n",
|
299 |
+
"57\n",
|
300 |
+
"[0]\n",
|
301 |
+
"this is q_latent_loss tensor(8.1208, device='cuda:0')\n",
|
302 |
+
"This is e_latent_loss tensor(2.0302, device='cuda:0')\n",
|
303 |
+
"57\n",
|
304 |
+
"[0]\n"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"name": "stderr",
|
309 |
+
"output_type": "stream",
|
310 |
+
"text": [
|
311 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
312 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
313 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"name": "stdout",
|
318 |
+
"output_type": "stream",
|
319 |
+
"text": [
|
320 |
+
"this is q_latent_loss tensor(7.0984, device='cuda:0')\n",
|
321 |
+
"This is e_latent_loss tensor(1.7746, device='cuda:0')\n",
|
322 |
+
"57\n",
|
323 |
+
"[0]\n",
|
324 |
+
"this is q_latent_loss tensor(7.0674, device='cuda:0')\n",
|
325 |
+
"This is e_latent_loss tensor(1.7669, device='cuda:0')\n",
|
326 |
+
"57\n",
|
327 |
+
"[0]\n",
|
328 |
+
"this is q_latent_loss tensor(13.3643, device='cuda:0')\n",
|
329 |
+
"This is e_latent_loss tensor(3.3411, device='cuda:0')\n",
|
330 |
+
"57\n",
|
331 |
+
"[0]\n"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"name": "stderr",
|
336 |
+
"output_type": "stream",
|
337 |
+
"text": [
|
338 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
339 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
340 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"name": "stdout",
|
345 |
+
"output_type": "stream",
|
346 |
+
"text": [
|
347 |
+
"this is q_latent_loss tensor(10.2910, device='cuda:0')\n",
|
348 |
+
"This is e_latent_loss tensor(2.5727, device='cuda:0')\n",
|
349 |
+
"57\n",
|
350 |
+
"[0]\n",
|
351 |
+
"this is q_latent_loss tensor(8.9972, device='cuda:0')\n",
|
352 |
+
"This is e_latent_loss tensor(2.2493, device='cuda:0')\n",
|
353 |
+
"57\n",
|
354 |
+
"[0]\n",
|
355 |
+
"this is q_latent_loss tensor(10.9211, device='cuda:0')\n",
|
356 |
+
"This is e_latent_loss tensor(2.7303, device='cuda:0')\n",
|
357 |
+
"57\n",
|
358 |
+
"[0]\n"
|
359 |
+
]
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"name": "stderr",
|
363 |
+
"output_type": "stream",
|
364 |
+
"text": [
|
365 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
366 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
367 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
368 |
+
]
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"name": "stdout",
|
372 |
+
"output_type": "stream",
|
373 |
+
"text": [
|
374 |
+
"this is q_latent_loss tensor(10.6993, device='cuda:0')\n",
|
375 |
+
"This is e_latent_loss tensor(2.6748, device='cuda:0')\n",
|
376 |
+
"57\n",
|
377 |
+
"[0]\n",
|
378 |
+
"this is q_latent_loss tensor(6.4199, device='cuda:0')\n",
|
379 |
+
"This is e_latent_loss tensor(1.6050, device='cuda:0')\n",
|
380 |
+
"57\n",
|
381 |
+
"[0]\n",
|
382 |
+
"Processed 30/21213 images\n",
|
383 |
+
"this is q_latent_loss tensor(9.1634, device='cuda:0')\n",
|
384 |
+
"This is e_latent_loss tensor(2.2909, device='cuda:0')\n",
|
385 |
+
"57\n",
|
386 |
+
"[0]\n"
|
387 |
+
]
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"name": "stderr",
|
391 |
+
"output_type": "stream",
|
392 |
+
"text": [
|
393 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
394 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
395 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
396 |
+
]
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"name": "stdout",
|
400 |
+
"output_type": "stream",
|
401 |
+
"text": [
|
402 |
+
"this is q_latent_loss tensor(11.9688, device='cuda:0')\n",
|
403 |
+
"This is e_latent_loss tensor(2.9922, device='cuda:0')\n",
|
404 |
+
"57\n",
|
405 |
+
"[0]\n",
|
406 |
+
"this is q_latent_loss tensor(9.6793, device='cuda:0')\n",
|
407 |
+
"This is e_latent_loss tensor(2.4198, device='cuda:0')\n",
|
408 |
+
"57\n",
|
409 |
+
"[0]\n",
|
410 |
+
"this is q_latent_loss tensor(10.4200, device='cuda:0')\n",
|
411 |
+
"This is e_latent_loss tensor(2.6050, device='cuda:0')\n",
|
412 |
+
"57\n",
|
413 |
+
"[0]\n"
|
414 |
+
]
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"name": "stderr",
|
418 |
+
"output_type": "stream",
|
419 |
+
"text": [
|
420 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
421 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
422 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
423 |
+
]
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"name": "stdout",
|
427 |
+
"output_type": "stream",
|
428 |
+
"text": [
|
429 |
+
"this is q_latent_loss tensor(10.4276, device='cuda:0')\n",
|
430 |
+
"This is e_latent_loss tensor(2.6069, device='cuda:0')\n",
|
431 |
+
"57\n",
|
432 |
+
"[0]\n",
|
433 |
+
"this is q_latent_loss tensor(10.8010, device='cuda:0')\n",
|
434 |
+
"This is e_latent_loss tensor(2.7003, device='cuda:0')\n",
|
435 |
+
"57\n",
|
436 |
+
"[0]\n",
|
437 |
+
"this is q_latent_loss tensor(7.6418, device='cuda:0')\n",
|
438 |
+
"This is e_latent_loss tensor(1.9105, device='cuda:0')\n",
|
439 |
+
"57\n",
|
440 |
+
"[0]\n"
|
441 |
+
]
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"name": "stderr",
|
445 |
+
"output_type": "stream",
|
446 |
+
"text": [
|
447 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
448 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
449 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
450 |
+
]
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"name": "stdout",
|
454 |
+
"output_type": "stream",
|
455 |
+
"text": [
|
456 |
+
"this is q_latent_loss tensor(8.3313, device='cuda:0')\n",
|
457 |
+
"This is e_latent_loss tensor(2.0828, device='cuda:0')\n",
|
458 |
+
"57\n",
|
459 |
+
"[0]\n",
|
460 |
+
"this is q_latent_loss tensor(9.5423, device='cuda:0')\n",
|
461 |
+
"This is e_latent_loss tensor(2.3856, device='cuda:0')\n",
|
462 |
+
"57\n",
|
463 |
+
"[0]\n",
|
464 |
+
"this is q_latent_loss tensor(8.8121, device='cuda:0')\n",
|
465 |
+
"This is e_latent_loss tensor(2.2030, device='cuda:0')\n",
|
466 |
+
"57\n",
|
467 |
+
"[0]\n",
|
468 |
+
"Processed 40/21213 images\n"
|
469 |
+
]
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"name": "stderr",
|
473 |
+
"output_type": "stream",
|
474 |
+
"text": [
|
475 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
476 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
477 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
478 |
+
]
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"name": "stdout",
|
482 |
+
"output_type": "stream",
|
483 |
+
"text": [
|
484 |
+
"this is q_latent_loss tensor(12.9253, device='cuda:0')\n",
|
485 |
+
"This is e_latent_loss tensor(3.2313, device='cuda:0')\n",
|
486 |
+
"57\n",
|
487 |
+
"[0]\n",
|
488 |
+
"this is q_latent_loss tensor(8.9912, device='cuda:0')\n",
|
489 |
+
"This is e_latent_loss tensor(2.2478, device='cuda:0')\n",
|
490 |
+
"57\n",
|
491 |
+
"[0]\n",
|
492 |
+
"this is q_latent_loss tensor(6.2949, device='cuda:0')\n",
|
493 |
+
"This is e_latent_loss tensor(1.5737, device='cuda:0')\n",
|
494 |
+
"57\n",
|
495 |
+
"[0]\n"
|
496 |
+
]
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"name": "stderr",
|
500 |
+
"output_type": "stream",
|
501 |
+
"text": [
|
502 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
503 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
504 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
505 |
+
]
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"name": "stdout",
|
509 |
+
"output_type": "stream",
|
510 |
+
"text": [
|
511 |
+
"this is q_latent_loss tensor(14.0637, device='cuda:0')\n",
|
512 |
+
"This is e_latent_loss tensor(3.5159, device='cuda:0')\n",
|
513 |
+
"57\n",
|
514 |
+
"[0]\n",
|
515 |
+
"this is q_latent_loss tensor(11.6149, device='cuda:0')\n",
|
516 |
+
"This is e_latent_loss tensor(2.9037, device='cuda:0')\n",
|
517 |
+
"57\n",
|
518 |
+
"[0]\n",
|
519 |
+
"this is q_latent_loss tensor(12.6029, device='cuda:0')\n",
|
520 |
+
"This is e_latent_loss tensor(3.1507, device='cuda:0')\n",
|
521 |
+
"57\n",
|
522 |
+
"[0]\n"
|
523 |
+
]
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"name": "stderr",
|
527 |
+
"output_type": "stream",
|
528 |
+
"text": [
|
529 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
530 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
531 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
532 |
+
]
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"name": "stdout",
|
536 |
+
"output_type": "stream",
|
537 |
+
"text": [
|
538 |
+
"this is q_latent_loss tensor(13.2988, device='cuda:0')\n",
|
539 |
+
"This is e_latent_loss tensor(3.3247, device='cuda:0')\n",
|
540 |
+
"57\n",
|
541 |
+
"[0]\n",
|
542 |
+
"this is q_latent_loss tensor(13.8039, device='cuda:0')\n",
|
543 |
+
"This is e_latent_loss tensor(3.4510, device='cuda:0')\n",
|
544 |
+
"57\n",
|
545 |
+
"[0]\n",
|
546 |
+
"this is q_latent_loss tensor(8.4613, device='cuda:0')\n",
|
547 |
+
"This is e_latent_loss tensor(2.1153, device='cuda:0')\n",
|
548 |
+
"57\n",
|
549 |
+
"[0]\n"
|
550 |
+
]
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"name": "stderr",
|
554 |
+
"output_type": "stream",
|
555 |
+
"text": [
|
556 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
557 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
558 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
559 |
+
]
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"name": "stdout",
|
563 |
+
"output_type": "stream",
|
564 |
+
"text": [
|
565 |
+
"this is q_latent_loss tensor(12.6695, device='cuda:0')\n",
|
566 |
+
"This is e_latent_loss tensor(3.1674, device='cuda:0')\n",
|
567 |
+
"57\n",
|
568 |
+
"[0]\n",
|
569 |
+
"Processed 50/21213 images\n",
|
570 |
+
"this is q_latent_loss tensor(9.4005, device='cuda:0')\n",
|
571 |
+
"This is e_latent_loss tensor(2.3501, device='cuda:0')\n",
|
572 |
+
"57\n",
|
573 |
+
"[0]\n",
|
574 |
+
"this is q_latent_loss tensor(12.8682, device='cuda:0')\n",
|
575 |
+
"This is e_latent_loss tensor(3.2171, device='cuda:0')\n",
|
576 |
+
"57\n",
|
577 |
+
"[0]\n"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"name": "stderr",
|
582 |
+
"output_type": "stream",
|
583 |
+
"text": [
|
584 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
585 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
586 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
587 |
+
]
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"name": "stdout",
|
591 |
+
"output_type": "stream",
|
592 |
+
"text": [
|
593 |
+
"this is q_latent_loss tensor(8.6948, device='cuda:0')\n",
|
594 |
+
"This is e_latent_loss tensor(2.1737, device='cuda:0')\n",
|
595 |
+
"57\n",
|
596 |
+
"[0]\n",
|
597 |
+
"this is q_latent_loss tensor(8.5272, device='cuda:0')\n",
|
598 |
+
"This is e_latent_loss tensor(2.1318, device='cuda:0')\n",
|
599 |
+
"57\n",
|
600 |
+
"[0]\n",
|
601 |
+
"this is q_latent_loss tensor(8.7591, device='cuda:0')\n",
|
602 |
+
"This is e_latent_loss tensor(2.1898, device='cuda:0')\n",
|
603 |
+
"57\n",
|
604 |
+
"[0]\n"
|
605 |
+
]
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"name": "stderr",
|
609 |
+
"output_type": "stream",
|
610 |
+
"text": [
|
611 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
612 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
613 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
614 |
+
]
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"name": "stdout",
|
618 |
+
"output_type": "stream",
|
619 |
+
"text": [
|
620 |
+
"this is q_latent_loss tensor(10.1201, device='cuda:0')\n",
|
621 |
+
"This is e_latent_loss tensor(2.5300, device='cuda:0')\n",
|
622 |
+
"57\n",
|
623 |
+
"[0]\n",
|
624 |
+
"this is q_latent_loss tensor(10.5750, device='cuda:0')\n",
|
625 |
+
"This is e_latent_loss tensor(2.6437, device='cuda:0')\n",
|
626 |
+
"57\n",
|
627 |
+
"[0]\n",
|
628 |
+
"this is q_latent_loss tensor(7.1127, device='cuda:0')\n",
|
629 |
+
"This is e_latent_loss tensor(1.7782, device='cuda:0')\n",
|
630 |
+
"57\n",
|
631 |
+
"[0]\n"
|
632 |
+
]
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"name": "stderr",
|
636 |
+
"output_type": "stream",
|
637 |
+
"text": [
|
638 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
639 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
640 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
641 |
+
]
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"name": "stdout",
|
645 |
+
"output_type": "stream",
|
646 |
+
"text": [
|
647 |
+
"this is q_latent_loss tensor(9.6827, device='cuda:0')\n",
|
648 |
+
"This is e_latent_loss tensor(2.4207, device='cuda:0')\n",
|
649 |
+
"57\n",
|
650 |
+
"[0]\n",
|
651 |
+
"this is q_latent_loss tensor(11.4962, device='cuda:0')\n",
|
652 |
+
"This is e_latent_loss tensor(2.8740, device='cuda:0')\n",
|
653 |
+
"57\n",
|
654 |
+
"[0]\n",
|
655 |
+
"Processed 60/21213 images\n",
|
656 |
+
"this is q_latent_loss tensor(9.2464, device='cuda:0')\n",
|
657 |
+
"This is e_latent_loss tensor(2.3116, device='cuda:0')\n",
|
658 |
+
"57\n",
|
659 |
+
"[0]\n"
|
660 |
+
]
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"name": "stderr",
|
664 |
+
"output_type": "stream",
|
665 |
+
"text": [
|
666 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
667 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
668 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
669 |
+
]
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"name": "stdout",
|
673 |
+
"output_type": "stream",
|
674 |
+
"text": [
|
675 |
+
"this is q_latent_loss tensor(9.1726, device='cuda:0')\n",
|
676 |
+
"This is e_latent_loss tensor(2.2932, device='cuda:0')\n",
|
677 |
+
"57\n",
|
678 |
+
"[0]\n",
|
679 |
+
"this is q_latent_loss tensor(7.0186, device='cuda:0')\n",
|
680 |
+
"This is e_latent_loss tensor(1.7546, device='cuda:0')\n",
|
681 |
+
"57\n",
|
682 |
+
"[0]\n"
|
683 |
+
]
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"name": "stderr",
|
687 |
+
"output_type": "stream",
|
688 |
+
"text": [
|
689 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
690 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
691 |
+
]
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"name": "stdout",
|
695 |
+
"output_type": "stream",
|
696 |
+
"text": [
|
697 |
+
"this is q_latent_loss tensor(9.8717, device='cuda:0')\n",
|
698 |
+
"This is e_latent_loss tensor(2.4679, device='cuda:0')\n",
|
699 |
+
"57\n",
|
700 |
+
"[0]\n",
|
701 |
+
"this is q_latent_loss tensor(14.1204, device='cuda:0')\n",
|
702 |
+
"This is e_latent_loss tensor(3.5301, device='cuda:0')\n",
|
703 |
+
"57\n",
|
704 |
+
"[0]\n"
|
705 |
+
]
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"name": "stderr",
|
709 |
+
"output_type": "stream",
|
710 |
+
"text": [
|
711 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
712 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
713 |
+
]
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"name": "stdout",
|
717 |
+
"output_type": "stream",
|
718 |
+
"text": [
|
719 |
+
"this is q_latent_loss tensor(8.3599, device='cuda:0')\n",
|
720 |
+
"This is e_latent_loss tensor(2.0900, device='cuda:0')\n",
|
721 |
+
"57\n",
|
722 |
+
"[0]\n",
|
723 |
+
"this is q_latent_loss tensor(12.3845, device='cuda:0')\n",
|
724 |
+
"This is e_latent_loss tensor(3.0961, device='cuda:0')\n",
|
725 |
+
"57\n",
|
726 |
+
"[0]\n"
|
727 |
+
]
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"name": "stderr",
|
731 |
+
"output_type": "stream",
|
732 |
+
"text": [
|
733 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
734 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
735 |
+
]
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"name": "stdout",
|
739 |
+
"output_type": "stream",
|
740 |
+
"text": [
|
741 |
+
"this is q_latent_loss tensor(11.8901, device='cuda:0')\n",
|
742 |
+
"This is e_latent_loss tensor(2.9725, device='cuda:0')\n",
|
743 |
+
"57\n",
|
744 |
+
"[0]\n",
|
745 |
+
"this is q_latent_loss tensor(12.0965, device='cuda:0')\n",
|
746 |
+
"This is e_latent_loss tensor(3.0241, device='cuda:0')\n",
|
747 |
+
"57\n",
|
748 |
+
"[0]\n"
|
749 |
+
]
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"name": "stderr",
|
753 |
+
"output_type": "stream",
|
754 |
+
"text": [
|
755 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
756 |
+
]
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"name": "stdout",
|
760 |
+
"output_type": "stream",
|
761 |
+
"text": [
|
762 |
+
"this is q_latent_loss tensor(8.8583, device='cuda:0')\n",
|
763 |
+
"This is e_latent_loss tensor(2.2146, device='cuda:0')\n",
|
764 |
+
"57\n",
|
765 |
+
"[0]\n",
|
766 |
+
"Processed 70/21213 images\n"
|
767 |
+
]
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"name": "stderr",
|
771 |
+
"output_type": "stream",
|
772 |
+
"text": [
|
773 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
774 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
775 |
+
]
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"name": "stdout",
|
779 |
+
"output_type": "stream",
|
780 |
+
"text": [
|
781 |
+
"this is q_latent_loss tensor(11.9591, device='cuda:0')\n",
|
782 |
+
"This is e_latent_loss tensor(2.9898, device='cuda:0')\n",
|
783 |
+
"57\n",
|
784 |
+
"[0]\n",
|
785 |
+
"this is q_latent_loss tensor(8.9921, device='cuda:0')\n",
|
786 |
+
"This is e_latent_loss tensor(2.2480, device='cuda:0')\n",
|
787 |
+
"57\n",
|
788 |
+
"[0]\n"
|
789 |
+
]
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"name": "stderr",
|
793 |
+
"output_type": "stream",
|
794 |
+
"text": [
|
795 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
796 |
+
]
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"name": "stdout",
|
800 |
+
"output_type": "stream",
|
801 |
+
"text": [
|
802 |
+
"this is q_latent_loss tensor(7.3415, device='cuda:0')\n",
|
803 |
+
"This is e_latent_loss tensor(1.8354, device='cuda:0')\n",
|
804 |
+
"57\n",
|
805 |
+
"[0]\n"
|
806 |
+
]
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"name": "stderr",
|
810 |
+
"output_type": "stream",
|
811 |
+
"text": [
|
812 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
813 |
+
]
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"name": "stdout",
|
817 |
+
"output_type": "stream",
|
818 |
+
"text": [
|
819 |
+
"this is q_latent_loss tensor(9.7903, device='cuda:0')\n",
|
820 |
+
"This is e_latent_loss tensor(2.4476, device='cuda:0')\n",
|
821 |
+
"57\n",
|
822 |
+
"[0]\n"
|
823 |
+
]
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"name": "stderr",
|
827 |
+
"output_type": "stream",
|
828 |
+
"text": [
|
829 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
830 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
831 |
+
]
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"name": "stdout",
|
835 |
+
"output_type": "stream",
|
836 |
+
"text": [
|
837 |
+
"this is q_latent_loss tensor(8.8003, device='cuda:0')\n",
|
838 |
+
"This is e_latent_loss tensor(2.2001, device='cuda:0')\n",
|
839 |
+
"57\n",
|
840 |
+
"[0]\n",
|
841 |
+
"this is q_latent_loss tensor(6.3422, device='cuda:0')\n",
|
842 |
+
"This is e_latent_loss tensor(1.5856, device='cuda:0')\n",
|
843 |
+
"57\n",
|
844 |
+
"[0]\n"
|
845 |
+
]
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"name": "stderr",
|
849 |
+
"output_type": "stream",
|
850 |
+
"text": [
|
851 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
852 |
+
]
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"name": "stdout",
|
856 |
+
"output_type": "stream",
|
857 |
+
"text": [
|
858 |
+
"this is q_latent_loss tensor(8.4356, device='cuda:0')\n",
|
859 |
+
"This is e_latent_loss tensor(2.1089, device='cuda:0')\n",
|
860 |
+
"57\n",
|
861 |
+
"[0]\n",
|
862 |
+
"this is q_latent_loss tensor(9.7969, device='cuda:0')\n",
|
863 |
+
"This is e_latent_loss tensor(2.4492, device='cuda:0')\n",
|
864 |
+
"57\n",
|
865 |
+
"[0]\n"
|
866 |
+
]
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"name": "stderr",
|
870 |
+
"output_type": "stream",
|
871 |
+
"text": [
|
872 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
873 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
874 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
875 |
+
]
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"name": "stdout",
|
879 |
+
"output_type": "stream",
|
880 |
+
"text": [
|
881 |
+
"this is q_latent_loss tensor(10.9973, device='cuda:0')\n",
|
882 |
+
"This is e_latent_loss tensor(2.7493, device='cuda:0')\n",
|
883 |
+
"57\n",
|
884 |
+
"[0]\n",
|
885 |
+
"this is q_latent_loss tensor(8.3360, device='cuda:0')\n",
|
886 |
+
"This is e_latent_loss tensor(2.0840, device='cuda:0')\n",
|
887 |
+
"57\n",
|
888 |
+
"[0]\n",
|
889 |
+
"Processed 80/21213 images\n"
|
890 |
+
]
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"name": "stderr",
|
894 |
+
"output_type": "stream",
|
895 |
+
"text": [
|
896 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
897 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
898 |
+
]
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"name": "stdout",
|
902 |
+
"output_type": "stream",
|
903 |
+
"text": [
|
904 |
+
"this is q_latent_loss tensor(11.2751, device='cuda:0')\n",
|
905 |
+
"This is e_latent_loss tensor(2.8188, device='cuda:0')\n",
|
906 |
+
"57\n",
|
907 |
+
"[0]\n",
|
908 |
+
"this is q_latent_loss tensor(8.1294, device='cuda:0')\n",
|
909 |
+
"This is e_latent_loss tensor(2.0324, device='cuda:0')\n",
|
910 |
+
"57\n",
|
911 |
+
"[0]\n"
|
912 |
+
]
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"name": "stderr",
|
916 |
+
"output_type": "stream",
|
917 |
+
"text": [
|
918 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
919 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
920 |
+
]
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"name": "stdout",
|
924 |
+
"output_type": "stream",
|
925 |
+
"text": [
|
926 |
+
"this is q_latent_loss tensor(7.8635, device='cuda:0')\n",
|
927 |
+
"This is e_latent_loss tensor(1.9659, device='cuda:0')\n",
|
928 |
+
"57\n",
|
929 |
+
"[0]\n",
|
930 |
+
"this is q_latent_loss tensor(7.8551, device='cuda:0')\n",
|
931 |
+
"This is e_latent_loss tensor(1.9638, device='cuda:0')\n",
|
932 |
+
"57\n",
|
933 |
+
"[0]\n"
|
934 |
+
]
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"name": "stderr",
|
938 |
+
"output_type": "stream",
|
939 |
+
"text": [
|
940 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
941 |
+
]
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"name": "stdout",
|
945 |
+
"output_type": "stream",
|
946 |
+
"text": [
|
947 |
+
"this is q_latent_loss tensor(9.8822, device='cuda:0')\n",
|
948 |
+
"This is e_latent_loss tensor(2.4705, device='cuda:0')\n",
|
949 |
+
"57\n",
|
950 |
+
"[0]\n"
|
951 |
+
]
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"name": "stderr",
|
955 |
+
"output_type": "stream",
|
956 |
+
"text": [
|
957 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
958 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
959 |
+
]
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"name": "stdout",
|
963 |
+
"output_type": "stream",
|
964 |
+
"text": [
|
965 |
+
"this is q_latent_loss tensor(8.0291, device='cuda:0')\n",
|
966 |
+
"This is e_latent_loss tensor(2.0073, device='cuda:0')\n",
|
967 |
+
"57\n",
|
968 |
+
"[0]\n",
|
969 |
+
"this is q_latent_loss tensor(9.0501, device='cuda:0')\n",
|
970 |
+
"This is e_latent_loss tensor(2.2625, device='cuda:0')\n",
|
971 |
+
"57\n",
|
972 |
+
"[0]\n"
|
973 |
+
]
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"name": "stderr",
|
977 |
+
"output_type": "stream",
|
978 |
+
"text": [
|
979 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
980 |
+
]
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"name": "stdout",
|
984 |
+
"output_type": "stream",
|
985 |
+
"text": [
|
986 |
+
"this is q_latent_loss tensor(12.6947, device='cuda:0')\n",
|
987 |
+
"This is e_latent_loss tensor(3.1737, device='cuda:0')\n",
|
988 |
+
"57\n",
|
989 |
+
"[0]\n"
|
990 |
+
]
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"name": "stderr",
|
994 |
+
"output_type": "stream",
|
995 |
+
"text": [
|
996 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
997 |
+
]
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"name": "stdout",
|
1001 |
+
"output_type": "stream",
|
1002 |
+
"text": [
|
1003 |
+
"this is q_latent_loss tensor(9.9940, device='cuda:0')\n",
|
1004 |
+
"This is e_latent_loss tensor(2.4985, device='cuda:0')\n",
|
1005 |
+
"57\n",
|
1006 |
+
"[0]\n"
|
1007 |
+
]
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"name": "stderr",
|
1011 |
+
"output_type": "stream",
|
1012 |
+
"text": [
|
1013 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1014 |
+
]
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"name": "stdout",
|
1018 |
+
"output_type": "stream",
|
1019 |
+
"text": [
|
1020 |
+
"this is q_latent_loss tensor(7.2904, device='cuda:0')\n",
|
1021 |
+
"This is e_latent_loss tensor(1.8226, device='cuda:0')\n",
|
1022 |
+
"57\n",
|
1023 |
+
"[0]\n",
|
1024 |
+
"Processed 90/21213 images\n",
|
1025 |
+
"this is q_latent_loss tensor(9.6648, device='cuda:0')\n",
|
1026 |
+
"This is e_latent_loss tensor(2.4162, device='cuda:0')\n",
|
1027 |
+
"57\n",
|
1028 |
+
"[0]\n"
|
1029 |
+
]
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"name": "stderr",
|
1033 |
+
"output_type": "stream",
|
1034 |
+
"text": [
|
1035 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1036 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1037 |
+
]
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"name": "stdout",
|
1041 |
+
"output_type": "stream",
|
1042 |
+
"text": [
|
1043 |
+
"this is q_latent_loss tensor(9.5542, device='cuda:0')\n",
|
1044 |
+
"This is e_latent_loss tensor(2.3886, device='cuda:0')\n",
|
1045 |
+
"57\n",
|
1046 |
+
"[0]\n"
|
1047 |
+
]
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"name": "stderr",
|
1051 |
+
"output_type": "stream",
|
1052 |
+
"text": [
|
1053 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1054 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1055 |
+
]
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"name": "stdout",
|
1059 |
+
"output_type": "stream",
|
1060 |
+
"text": [
|
1061 |
+
"this is q_latent_loss tensor(9.8552, device='cuda:0')\n",
|
1062 |
+
"This is e_latent_loss tensor(2.4638, device='cuda:0')\n",
|
1063 |
+
"57\n",
|
1064 |
+
"[0]\n",
|
1065 |
+
"this is q_latent_loss tensor(8.3666, device='cuda:0')\n",
|
1066 |
+
"This is e_latent_loss tensor(2.0916, device='cuda:0')\n",
|
1067 |
+
"57\n",
|
1068 |
+
"[0]\n"
|
1069 |
+
]
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"name": "stderr",
|
1073 |
+
"output_type": "stream",
|
1074 |
+
"text": [
|
1075 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1076 |
+
]
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"name": "stdout",
|
1080 |
+
"output_type": "stream",
|
1081 |
+
"text": [
|
1082 |
+
"this is q_latent_loss tensor(9.7352, device='cuda:0')\n",
|
1083 |
+
"This is e_latent_loss tensor(2.4338, device='cuda:0')\n",
|
1084 |
+
"57\n",
|
1085 |
+
"[0]\n"
|
1086 |
+
]
|
1087 |
+
},
|
1088 |
+
{
|
1089 |
+
"name": "stderr",
|
1090 |
+
"output_type": "stream",
|
1091 |
+
"text": [
|
1092 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1093 |
+
]
|
1094 |
+
},
|
1095 |
+
{
|
1096 |
+
"name": "stdout",
|
1097 |
+
"output_type": "stream",
|
1098 |
+
"text": [
|
1099 |
+
"this is q_latent_loss tensor(8.1629, device='cuda:0')\n",
|
1100 |
+
"This is e_latent_loss tensor(2.0407, device='cuda:0')\n",
|
1101 |
+
"57\n",
|
1102 |
+
"[0]\n",
|
1103 |
+
"this is q_latent_loss tensor(14.1190, device='cuda:0')\n",
|
1104 |
+
"This is e_latent_loss tensor(3.5297, device='cuda:0')\n",
|
1105 |
+
"57\n",
|
1106 |
+
"[0]\n"
|
1107 |
+
]
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"name": "stderr",
|
1111 |
+
"output_type": "stream",
|
1112 |
+
"text": [
|
1113 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1114 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1115 |
+
]
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"name": "stdout",
|
1119 |
+
"output_type": "stream",
|
1120 |
+
"text": [
|
1121 |
+
"this is q_latent_loss tensor(11.3341, device='cuda:0')\n",
|
1122 |
+
"This is e_latent_loss tensor(2.8335, device='cuda:0')\n",
|
1123 |
+
"57\n",
|
1124 |
+
"[0]\n"
|
1125 |
+
]
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"name": "stderr",
|
1129 |
+
"output_type": "stream",
|
1130 |
+
"text": [
|
1131 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1132 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1133 |
+
]
|
1134 |
+
},
|
1135 |
+
{
|
1136 |
+
"name": "stdout",
|
1137 |
+
"output_type": "stream",
|
1138 |
+
"text": [
|
1139 |
+
"this is q_latent_loss tensor(8.9301, device='cuda:0')\n",
|
1140 |
+
"This is e_latent_loss tensor(2.2325, device='cuda:0')\n",
|
1141 |
+
"57\n",
|
1142 |
+
"[0]\n",
|
1143 |
+
"this is q_latent_loss tensor(6.2145, device='cuda:0')\n",
|
1144 |
+
"This is e_latent_loss tensor(1.5536, device='cuda:0')\n",
|
1145 |
+
"57\n",
|
1146 |
+
"[0]\n",
|
1147 |
+
"Processed 100/21213 images\n"
|
1148 |
+
]
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"name": "stderr",
|
1152 |
+
"output_type": "stream",
|
1153 |
+
"text": [
|
1154 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1155 |
+
]
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"name": "stdout",
|
1159 |
+
"output_type": "stream",
|
1160 |
+
"text": [
|
1161 |
+
"this is q_latent_loss tensor(8.1991, device='cuda:0')\n",
|
1162 |
+
"This is e_latent_loss tensor(2.0498, device='cuda:0')\n",
|
1163 |
+
"57\n",
|
1164 |
+
"[0]\n"
|
1165 |
+
]
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"name": "stderr",
|
1169 |
+
"output_type": "stream",
|
1170 |
+
"text": [
|
1171 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1172 |
+
]
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"name": "stdout",
|
1176 |
+
"output_type": "stream",
|
1177 |
+
"text": [
|
1178 |
+
"this is q_latent_loss tensor(11.6093, device='cuda:0')\n",
|
1179 |
+
"This is e_latent_loss tensor(2.9023, device='cuda:0')\n",
|
1180 |
+
"57\n",
|
1181 |
+
"[0]\n"
|
1182 |
+
]
|
1183 |
+
},
|
1184 |
+
{
|
1185 |
+
"name": "stderr",
|
1186 |
+
"output_type": "stream",
|
1187 |
+
"text": [
|
1188 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1189 |
+
]
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"name": "stdout",
|
1193 |
+
"output_type": "stream",
|
1194 |
+
"text": [
|
1195 |
+
"this is q_latent_loss tensor(9.7087, device='cuda:0')\n",
|
1196 |
+
"This is e_latent_loss tensor(2.4272, device='cuda:0')\n",
|
1197 |
+
"57\n",
|
1198 |
+
"[0]\n"
|
1199 |
+
]
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"name": "stderr",
|
1203 |
+
"output_type": "stream",
|
1204 |
+
"text": [
|
1205 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1206 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1207 |
+
]
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"name": "stdout",
|
1211 |
+
"output_type": "stream",
|
1212 |
+
"text": [
|
1213 |
+
"this is q_latent_loss tensor(8.8062, device='cuda:0')\n",
|
1214 |
+
"This is e_latent_loss tensor(2.2016, device='cuda:0')\n",
|
1215 |
+
"57\n",
|
1216 |
+
"[0]\n",
|
1217 |
+
"this is q_latent_loss tensor(8.4319, device='cuda:0')\n",
|
1218 |
+
"This is e_latent_loss tensor(2.1080, device='cuda:0')\n",
|
1219 |
+
"57\n",
|
1220 |
+
"[0]\n"
|
1221 |
+
]
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"name": "stderr",
|
1225 |
+
"output_type": "stream",
|
1226 |
+
"text": [
|
1227 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1228 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1229 |
+
]
|
1230 |
+
},
|
1231 |
+
{
|
1232 |
+
"name": "stdout",
|
1233 |
+
"output_type": "stream",
|
1234 |
+
"text": [
|
1235 |
+
"this is q_latent_loss tensor(8.5253, device='cuda:0')\n",
|
1236 |
+
"This is e_latent_loss tensor(2.1313, device='cuda:0')\n",
|
1237 |
+
"57\n",
|
1238 |
+
"[0]\n",
|
1239 |
+
"this is q_latent_loss tensor(8.1614, device='cuda:0')\n",
|
1240 |
+
"This is e_latent_loss tensor(2.0404, device='cuda:0')\n",
|
1241 |
+
"57\n",
|
1242 |
+
"[0]\n"
|
1243 |
+
]
|
1244 |
+
},
|
1245 |
+
{
|
1246 |
+
"name": "stderr",
|
1247 |
+
"output_type": "stream",
|
1248 |
+
"text": [
|
1249 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1250 |
+
]
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"name": "stdout",
|
1254 |
+
"output_type": "stream",
|
1255 |
+
"text": [
|
1256 |
+
"this is q_latent_loss tensor(9.9642, device='cuda:0')\n",
|
1257 |
+
"This is e_latent_loss tensor(2.4910, device='cuda:0')\n",
|
1258 |
+
"57\n",
|
1259 |
+
"[0]\n"
|
1260 |
+
]
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"name": "stderr",
|
1264 |
+
"output_type": "stream",
|
1265 |
+
"text": [
|
1266 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1267 |
+
]
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"name": "stdout",
|
1271 |
+
"output_type": "stream",
|
1272 |
+
"text": [
|
1273 |
+
"this is q_latent_loss tensor(9.2686, device='cuda:0')\n",
|
1274 |
+
"This is e_latent_loss tensor(2.3171, device='cuda:0')\n",
|
1275 |
+
"57\n",
|
1276 |
+
"[0]\n"
|
1277 |
+
]
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"name": "stderr",
|
1281 |
+
"output_type": "stream",
|
1282 |
+
"text": [
|
1283 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1284 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1285 |
+
]
|
1286 |
+
},
|
1287 |
+
{
|
1288 |
+
"name": "stdout",
|
1289 |
+
"output_type": "stream",
|
1290 |
+
"text": [
|
1291 |
+
"this is q_latent_loss tensor(10.1140, device='cuda:0')\n",
|
1292 |
+
"This is e_latent_loss tensor(2.5285, device='cuda:0')\n",
|
1293 |
+
"57\n",
|
1294 |
+
"[0]\n",
|
1295 |
+
"Processed 110/21213 images\n",
|
1296 |
+
"this is q_latent_loss tensor(12.3632, device='cuda:0')\n",
|
1297 |
+
"This is e_latent_loss tensor(3.0908, device='cuda:0')\n",
|
1298 |
+
"57\n",
|
1299 |
+
"[0]\n",
|
1300 |
+
"this is q_latent_loss tensor(8.1329, device='cuda:0')\n",
|
1301 |
+
"This is e_latent_loss tensor(2.0332, device='cuda:0')\n",
|
1302 |
+
"57\n",
|
1303 |
+
"[0]\n"
|
1304 |
+
]
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"name": "stderr",
|
1308 |
+
"output_type": "stream",
|
1309 |
+
"text": [
|
1310 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1311 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1312 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1313 |
+
]
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"name": "stdout",
|
1317 |
+
"output_type": "stream",
|
1318 |
+
"text": [
|
1319 |
+
"this is q_latent_loss tensor(8.9918, device='cuda:0')\n",
|
1320 |
+
"This is e_latent_loss tensor(2.2479, device='cuda:0')\n",
|
1321 |
+
"57\n",
|
1322 |
+
"[0]\n",
|
1323 |
+
"this is q_latent_loss tensor(7.1709, device='cuda:0')\n",
|
1324 |
+
"This is e_latent_loss tensor(1.7927, device='cuda:0')\n",
|
1325 |
+
"57\n",
|
1326 |
+
"[0]\n",
|
1327 |
+
"this is q_latent_loss tensor(10.1411, device='cuda:0')\n",
|
1328 |
+
"This is e_latent_loss tensor(2.5353, device='cuda:0')\n",
|
1329 |
+
"57\n",
|
1330 |
+
"[0]\n"
|
1331 |
+
]
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"name": "stderr",
|
1335 |
+
"output_type": "stream",
|
1336 |
+
"text": [
|
1337 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1338 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1339 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1340 |
+
]
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"name": "stdout",
|
1344 |
+
"output_type": "stream",
|
1345 |
+
"text": [
|
1346 |
+
"this is q_latent_loss tensor(10.4103, device='cuda:0')\n",
|
1347 |
+
"This is e_latent_loss tensor(2.6026, device='cuda:0')\n",
|
1348 |
+
"57\n",
|
1349 |
+
"[0]\n",
|
1350 |
+
"this is q_latent_loss tensor(9.9719, device='cuda:0')\n",
|
1351 |
+
"This is e_latent_loss tensor(2.4930, device='cuda:0')\n",
|
1352 |
+
"57\n",
|
1353 |
+
"[0]\n",
|
1354 |
+
"this is q_latent_loss tensor(6.5009, device='cuda:0')\n",
|
1355 |
+
"This is e_latent_loss tensor(1.6252, device='cuda:0')\n",
|
1356 |
+
"57\n",
|
1357 |
+
"[0]\n"
|
1358 |
+
]
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"name": "stderr",
|
1362 |
+
"output_type": "stream",
|
1363 |
+
"text": [
|
1364 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1365 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1366 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1367 |
+
]
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"name": "stdout",
|
1371 |
+
"output_type": "stream",
|
1372 |
+
"text": [
|
1373 |
+
"this is q_latent_loss tensor(7.8178, device='cuda:0')\n",
|
1374 |
+
"This is e_latent_loss tensor(1.9544, device='cuda:0')\n",
|
1375 |
+
"57\n",
|
1376 |
+
"[0]\n",
|
1377 |
+
"this is q_latent_loss tensor(12.2491, device='cuda:0')\n",
|
1378 |
+
"This is e_latent_loss tensor(3.0623, device='cuda:0')\n",
|
1379 |
+
"57\n",
|
1380 |
+
"[0]\n",
|
1381 |
+
"Processed 120/21213 images\n",
|
1382 |
+
"this is q_latent_loss tensor(11.7427, device='cuda:0')\n",
|
1383 |
+
"This is e_latent_loss tensor(2.9357, device='cuda:0')\n",
|
1384 |
+
"57\n",
|
1385 |
+
"[0]\n"
|
1386 |
+
]
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"name": "stderr",
|
1390 |
+
"output_type": "stream",
|
1391 |
+
"text": [
|
1392 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1393 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1394 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1395 |
+
]
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"name": "stdout",
|
1399 |
+
"output_type": "stream",
|
1400 |
+
"text": [
|
1401 |
+
"this is q_latent_loss tensor(8.0834, device='cuda:0')\n",
|
1402 |
+
"This is e_latent_loss tensor(2.0208, device='cuda:0')\n",
|
1403 |
+
"57\n",
|
1404 |
+
"[0]\n",
|
1405 |
+
"this is q_latent_loss tensor(12.1786, device='cuda:0')\n",
|
1406 |
+
"This is e_latent_loss tensor(3.0447, device='cuda:0')\n",
|
1407 |
+
"57\n",
|
1408 |
+
"[0]\n",
|
1409 |
+
"this is q_latent_loss tensor(9.7889, device='cuda:0')\n",
|
1410 |
+
"This is e_latent_loss tensor(2.4472, device='cuda:0')\n",
|
1411 |
+
"57\n",
|
1412 |
+
"[0]\n"
|
1413 |
+
]
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"name": "stderr",
|
1417 |
+
"output_type": "stream",
|
1418 |
+
"text": [
|
1419 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1420 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1421 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1422 |
+
]
|
1423 |
+
},
|
1424 |
+
{
|
1425 |
+
"name": "stdout",
|
1426 |
+
"output_type": "stream",
|
1427 |
+
"text": [
|
1428 |
+
"this is q_latent_loss tensor(8.3587, device='cuda:0')\n",
|
1429 |
+
"This is e_latent_loss tensor(2.0897, device='cuda:0')\n",
|
1430 |
+
"57\n",
|
1431 |
+
"[0]\n",
|
1432 |
+
"this is q_latent_loss tensor(8.1803, device='cuda:0')\n",
|
1433 |
+
"This is e_latent_loss tensor(2.0451, device='cuda:0')\n",
|
1434 |
+
"57\n",
|
1435 |
+
"[0]\n",
|
1436 |
+
"this is q_latent_loss tensor(9.9105, device='cuda:0')\n",
|
1437 |
+
"This is e_latent_loss tensor(2.4776, device='cuda:0')\n",
|
1438 |
+
"57\n",
|
1439 |
+
"[0]\n"
|
1440 |
+
]
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"name": "stderr",
|
1444 |
+
"output_type": "stream",
|
1445 |
+
"text": [
|
1446 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1447 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1448 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1449 |
+
]
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"name": "stdout",
|
1453 |
+
"output_type": "stream",
|
1454 |
+
"text": [
|
1455 |
+
"this is q_latent_loss tensor(8.8691, device='cuda:0')\n",
|
1456 |
+
"This is e_latent_loss tensor(2.2173, device='cuda:0')\n",
|
1457 |
+
"57\n",
|
1458 |
+
"[0]\n",
|
1459 |
+
"this is q_latent_loss tensor(7.4474, device='cuda:0')\n",
|
1460 |
+
"This is e_latent_loss tensor(1.8619, device='cuda:0')\n",
|
1461 |
+
"57\n",
|
1462 |
+
"[0]\n",
|
1463 |
+
"this is q_latent_loss tensor(9.4359, device='cuda:0')\n",
|
1464 |
+
"This is e_latent_loss tensor(2.3590, device='cuda:0')\n",
|
1465 |
+
"57\n",
|
1466 |
+
"[0]\n",
|
1467 |
+
"Processed 130/21213 images\n"
|
1468 |
+
]
|
1469 |
+
},
|
1470 |
+
{
|
1471 |
+
"name": "stderr",
|
1472 |
+
"output_type": "stream",
|
1473 |
+
"text": [
|
1474 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1475 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1476 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1477 |
+
]
|
1478 |
+
},
|
1479 |
+
{
|
1480 |
+
"name": "stdout",
|
1481 |
+
"output_type": "stream",
|
1482 |
+
"text": [
|
1483 |
+
"this is q_latent_loss tensor(6.5443, device='cuda:0')\n",
|
1484 |
+
"This is e_latent_loss tensor(1.6361, device='cuda:0')\n",
|
1485 |
+
"57\n",
|
1486 |
+
"[0]\n",
|
1487 |
+
"this is q_latent_loss tensor(7.5185, device='cuda:0')\n",
|
1488 |
+
"This is e_latent_loss tensor(1.8796, device='cuda:0')\n",
|
1489 |
+
"57\n",
|
1490 |
+
"[0]\n",
|
1491 |
+
"this is q_latent_loss tensor(15.6529, device='cuda:0')\n",
|
1492 |
+
"This is e_latent_loss tensor(3.9132, device='cuda:0')\n",
|
1493 |
+
"57\n",
|
1494 |
+
"[0]\n"
|
1495 |
+
]
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"name": "stderr",
|
1499 |
+
"output_type": "stream",
|
1500 |
+
"text": [
|
1501 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1502 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1503 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1504 |
+
]
|
1505 |
+
},
|
1506 |
+
{
|
1507 |
+
"name": "stdout",
|
1508 |
+
"output_type": "stream",
|
1509 |
+
"text": [
|
1510 |
+
"this is q_latent_loss tensor(11.5756, device='cuda:0')\n",
|
1511 |
+
"This is e_latent_loss tensor(2.8939, device='cuda:0')\n",
|
1512 |
+
"57\n",
|
1513 |
+
"[0]\n",
|
1514 |
+
"this is q_latent_loss tensor(12.6367, device='cuda:0')\n",
|
1515 |
+
"This is e_latent_loss tensor(3.1592, device='cuda:0')\n",
|
1516 |
+
"57\n",
|
1517 |
+
"[0]\n",
|
1518 |
+
"this is q_latent_loss tensor(10.2915, device='cuda:0')\n",
|
1519 |
+
"This is e_latent_loss tensor(2.5729, device='cuda:0')\n",
|
1520 |
+
"57\n",
|
1521 |
+
"[0]\n"
|
1522 |
+
]
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"name": "stderr",
|
1526 |
+
"output_type": "stream",
|
1527 |
+
"text": [
|
1528 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1529 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1530 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1531 |
+
]
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"name": "stdout",
|
1535 |
+
"output_type": "stream",
|
1536 |
+
"text": [
|
1537 |
+
"this is q_latent_loss tensor(9.9234, device='cuda:0')\n",
|
1538 |
+
"This is e_latent_loss tensor(2.4809, device='cuda:0')\n",
|
1539 |
+
"57\n",
|
1540 |
+
"[0]\n",
|
1541 |
+
"this is q_latent_loss tensor(12.2591, device='cuda:0')\n",
|
1542 |
+
"This is e_latent_loss tensor(3.0648, device='cuda:0')\n",
|
1543 |
+
"57\n",
|
1544 |
+
"[0]\n",
|
1545 |
+
"this is q_latent_loss tensor(9.1375, device='cuda:0')\n",
|
1546 |
+
"This is e_latent_loss tensor(2.2844, device='cuda:0')\n",
|
1547 |
+
"57\n",
|
1548 |
+
"[0]\n"
|
1549 |
+
]
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"name": "stderr",
|
1553 |
+
"output_type": "stream",
|
1554 |
+
"text": [
|
1555 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1556 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1557 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1558 |
+
]
|
1559 |
+
},
|
1560 |
+
{
|
1561 |
+
"name": "stdout",
|
1562 |
+
"output_type": "stream",
|
1563 |
+
"text": [
|
1564 |
+
"this is q_latent_loss tensor(8.9599, device='cuda:0')\n",
|
1565 |
+
"This is e_latent_loss tensor(2.2400, device='cuda:0')\n",
|
1566 |
+
"57\n",
|
1567 |
+
"[0]\n",
|
1568 |
+
"Processed 140/21213 images\n",
|
1569 |
+
"this is q_latent_loss tensor(10.5039, device='cuda:0')\n",
|
1570 |
+
"This is e_latent_loss tensor(2.6260, device='cuda:0')\n",
|
1571 |
+
"57\n",
|
1572 |
+
"[0]\n",
|
1573 |
+
"this is q_latent_loss tensor(9.1007, device='cuda:0')\n",
|
1574 |
+
"This is e_latent_loss tensor(2.2752, device='cuda:0')\n",
|
1575 |
+
"57\n",
|
1576 |
+
"[0]\n"
|
1577 |
+
]
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"name": "stderr",
|
1581 |
+
"output_type": "stream",
|
1582 |
+
"text": [
|
1583 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1584 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1585 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1586 |
+
]
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"name": "stdout",
|
1590 |
+
"output_type": "stream",
|
1591 |
+
"text": [
|
1592 |
+
"this is q_latent_loss tensor(13.8705, device='cuda:0')\n",
|
1593 |
+
"This is e_latent_loss tensor(3.4676, device='cuda:0')\n",
|
1594 |
+
"57\n",
|
1595 |
+
"[0]\n",
|
1596 |
+
"this is q_latent_loss tensor(10.4230, device='cuda:0')\n",
|
1597 |
+
"This is e_latent_loss tensor(2.6058, device='cuda:0')\n",
|
1598 |
+
"57\n",
|
1599 |
+
"[0]\n",
|
1600 |
+
"this is q_latent_loss tensor(10.0464, device='cuda:0')\n",
|
1601 |
+
"This is e_latent_loss tensor(2.5116, device='cuda:0')\n",
|
1602 |
+
"57\n",
|
1603 |
+
"[0]\n"
|
1604 |
+
]
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"name": "stderr",
|
1608 |
+
"output_type": "stream",
|
1609 |
+
"text": [
|
1610 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1611 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1612 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1613 |
+
]
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"name": "stdout",
|
1617 |
+
"output_type": "stream",
|
1618 |
+
"text": [
|
1619 |
+
"this is q_latent_loss tensor(10.8465, device='cuda:0')\n",
|
1620 |
+
"This is e_latent_loss tensor(2.7116, device='cuda:0')\n",
|
1621 |
+
"57\n",
|
1622 |
+
"[0]\n",
|
1623 |
+
"this is q_latent_loss tensor(9.8604, device='cuda:0')\n",
|
1624 |
+
"This is e_latent_loss tensor(2.4651, device='cuda:0')\n",
|
1625 |
+
"57\n",
|
1626 |
+
"[0]\n",
|
1627 |
+
"this is q_latent_loss tensor(7.0887, device='cuda:0')\n",
|
1628 |
+
"This is e_latent_loss tensor(1.7722, device='cuda:0')\n",
|
1629 |
+
"57\n",
|
1630 |
+
"[0]\n"
|
1631 |
+
]
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"name": "stderr",
|
1635 |
+
"output_type": "stream",
|
1636 |
+
"text": [
|
1637 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1638 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1639 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1640 |
+
]
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"name": "stdout",
|
1644 |
+
"output_type": "stream",
|
1645 |
+
"text": [
|
1646 |
+
"this is q_latent_loss tensor(9.0656, device='cuda:0')\n",
|
1647 |
+
"This is e_latent_loss tensor(2.2664, device='cuda:0')\n",
|
1648 |
+
"57\n",
|
1649 |
+
"[0]\n",
|
1650 |
+
"this is q_latent_loss tensor(8.3511, device='cuda:0')\n",
|
1651 |
+
"This is e_latent_loss tensor(2.0878, device='cuda:0')\n",
|
1652 |
+
"57\n",
|
1653 |
+
"[0]\n",
|
1654 |
+
"Processed 150/21213 images\n",
|
1655 |
+
"this is q_latent_loss tensor(11.1818, device='cuda:0')\n",
|
1656 |
+
"This is e_latent_loss tensor(2.7954, device='cuda:0')\n",
|
1657 |
+
"57\n",
|
1658 |
+
"[0]\n"
|
1659 |
+
]
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"name": "stderr",
|
1663 |
+
"output_type": "stream",
|
1664 |
+
"text": [
|
1665 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1666 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1667 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1668 |
+
]
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"name": "stdout",
|
1672 |
+
"output_type": "stream",
|
1673 |
+
"text": [
|
1674 |
+
"this is q_latent_loss tensor(7.8044, device='cuda:0')\n",
|
1675 |
+
"This is e_latent_loss tensor(1.9511, device='cuda:0')\n",
|
1676 |
+
"57\n",
|
1677 |
+
"[0]\n",
|
1678 |
+
"this is q_latent_loss tensor(8.0274, device='cuda:0')\n",
|
1679 |
+
"This is e_latent_loss tensor(2.0068, device='cuda:0')\n",
|
1680 |
+
"57\n",
|
1681 |
+
"[0]\n",
|
1682 |
+
"this is q_latent_loss tensor(8.4584, device='cuda:0')\n",
|
1683 |
+
"This is e_latent_loss tensor(2.1146, device='cuda:0')\n",
|
1684 |
+
"57\n",
|
1685 |
+
"[0]\n"
|
1686 |
+
]
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"name": "stderr",
|
1690 |
+
"output_type": "stream",
|
1691 |
+
"text": [
|
1692 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1693 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1694 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1695 |
+
]
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"name": "stdout",
|
1699 |
+
"output_type": "stream",
|
1700 |
+
"text": [
|
1701 |
+
"this is q_latent_loss tensor(8.1515, device='cuda:0')\n",
|
1702 |
+
"This is e_latent_loss tensor(2.0379, device='cuda:0')\n",
|
1703 |
+
"57\n",
|
1704 |
+
"[0]\n",
|
1705 |
+
"this is q_latent_loss tensor(9.8069, device='cuda:0')\n",
|
1706 |
+
"This is e_latent_loss tensor(2.4517, device='cuda:0')\n",
|
1707 |
+
"57\n",
|
1708 |
+
"[0]\n",
|
1709 |
+
"this is q_latent_loss tensor(10.3290, device='cuda:0')\n",
|
1710 |
+
"This is e_latent_loss tensor(2.5823, device='cuda:0')\n",
|
1711 |
+
"57\n",
|
1712 |
+
"[0]\n"
|
1713 |
+
]
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"name": "stderr",
|
1717 |
+
"output_type": "stream",
|
1718 |
+
"text": [
|
1719 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
|
1720 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
1721 |
+
]
|
1722 |
+
}
|
1723 |
+
],
|
1724 |
+
"source": [
|
1725 |
+
"from PIL import Image\n",
|
1726 |
+
"import torch\n",
|
1727 |
+
"import os\n",
|
1728 |
+
"import json\n",
|
1729 |
+
"import re\n",
|
1730 |
+
"\n",
|
1731 |
+
"# 假设 processor 和 model 已经初始化好了\n",
|
1732 |
+
"# 如果没有,需要添加相关的初始化代码\n",
|
1733 |
+
"\n",
|
1734 |
+
"def get_category_from_path(path):\n",
|
1735 |
+
" \"\"\"从路径中提取类别\"\"\"\n",
|
1736 |
+
" if \"porn\" in path:\n",
|
1737 |
+
" return \"porn\"\n",
|
1738 |
+
" elif \"blood\" in path:\n",
|
1739 |
+
" return \"blood\"\n",
|
1740 |
+
" elif \"gun\" in path:\n",
|
1741 |
+
" return \"gun\"\n",
|
1742 |
+
" elif \"insulting_gesture\" in path:\n",
|
1743 |
+
" return \"insulting_gesture\"\n",
|
1744 |
+
" elif \"alcohol\" in path:\n",
|
1745 |
+
" return \"alcohol\"\n",
|
1746 |
+
" elif \"cigarette\" in path:\n",
|
1747 |
+
" return \"cigarette\"\n",
|
1748 |
+
" elif \"knife\" in path:\n",
|
1749 |
+
" return \"knife\"\n",
|
1750 |
+
" elif \"real_neutral\" in path:\n",
|
1751 |
+
" return \"neutral\"\n",
|
1752 |
+
" else:\n",
|
1753 |
+
" return \"unknown\"\n",
|
1754 |
+
"\n",
|
1755 |
+
"def process_image(image_path, processor, model):\n",
|
1756 |
+
" \"\"\"处理图像并获取描述\"\"\"\n",
|
1757 |
+
" try:\n",
|
1758 |
+
" image = Image.open(image_path)\n",
|
1759 |
+
" \n",
|
1760 |
+
" conversation = [\n",
|
1761 |
+
" {\n",
|
1762 |
+
" \"role\": \"user\",\n",
|
1763 |
+
" \"content\": [\n",
|
1764 |
+
" {\"type\": \"text\", \"text\": \"Describe this image \"},\n",
|
1765 |
+
" {\"type\": \"image\"},\n",
|
1766 |
+
" ],\n",
|
1767 |
+
" }, \n",
|
1768 |
+
" ]\n",
|
1769 |
+
" \n",
|
1770 |
+
" prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)\n",
|
1771 |
+
" \n",
|
1772 |
+
" inputs = processor(images=image, text=prompt, return_tensors=\"pt\").to(model.device)\n",
|
1773 |
+
" \n",
|
1774 |
+
" with torch.no_grad():\n",
|
1775 |
+
" output = model.generate(**inputs, max_new_tokens=10) # 增加 token 数量以获取更详细的描述\n",
|
1776 |
+
" \n",
|
1777 |
+
" description = processor.decode(output[0], skip_special_tokens=True)\n",
|
1778 |
+
" \n",
|
1779 |
+
" # 清理描述文本,移除提示和可能的系统消息\n",
|
1780 |
+
" # 这部分可能需要根据实际输出进行调整\n",
|
1781 |
+
" description = re.sub(r\"Describe this image\\s*\", \"\", description)\n",
|
1782 |
+
" \n",
|
1783 |
+
" return description\n",
|
1784 |
+
" except ValueError as e:\n",
|
1785 |
+
" error_data = e.args[0] # 这将获取到 [indices, categories[0]]\n",
|
1786 |
+
" \n",
|
1787 |
+
" # 提取 indices 和 categories[0]\n",
|
1788 |
+
" if isinstance(error_data, list) and len(error_data) == 2:\n",
|
1789 |
+
" captured_indices = error_data[0]\n",
|
1790 |
+
" captured_category = error_data[1]\n",
|
1791 |
+
"\n",
|
1792 |
+
" return f\"Error processing image: {id2class[captured_category]} index {captured_indices}\"\n",
|
1793 |
+
"\n",
|
1794 |
+
"def main():\n",
|
1795 |
+
" image_folders = [\n",
|
1796 |
+
" \"/common/home/users/w/wzhao/llava_helper/nsfw_dataset_v1/porn/train\",\n",
|
1797 |
+
" \"/common/home/users/w/wzhao/llava_helper/nsfw_dataset_v1/porn/test\",\n",
|
1798 |
+
" \"/common/home/users/w/wzhao/llava_helper/dataset/class/blood/testing/jpg\",\n",
|
1799 |
+
" \"/common/home/users/w/wzhao/llava_helper/dataset/class/blood/training/jpg\",\n",
|
1800 |
+
" \"/common/home/users/w/wzhao/llava_helper/dataset/class/gun/testing/jpg\",\n",
|
1801 |
+
" \"/common/home/users/w/wzhao/llava_helper/dataset/class/gun/training/jpg\",\n",
|
1802 |
+
" \"/common/home/users/w/wzhao/llava_helper/dataset/class/insulting_gesture/training/jpg\",\n",
|
1803 |
+
" \"/common/home/users/w/wzhao/llava_helper/dataset/class/insulting_gesture/testing/jpg\",\n",
|
1804 |
+
" \"/common/home/users/w/wzhao/llava_helper/dataset/class/alcohol/testing/jpg\",\n",
|
1805 |
+
" \"/common/home/users/w/wzhao/llava_helper/dataset/class/alcohol/training/jpg\",\n",
|
1806 |
+
" \"/common/home/users/w/wzhao/llava_helper/dataset/class/cigarette/testing/jpg\",\n",
|
1807 |
+
" \"/common/home/users/w/wzhao/llava_helper/dataset/class/cigarette/training/jpg\",\n",
|
1808 |
+
" \"/common/home/users/w/wzhao/llava_helper/dataset/class/knife/testing/jpg\",\n",
|
1809 |
+
" \"/common/home/users/w/wzhao/llava_helper/dataset/class/knife/training/jpg\",\n",
|
1810 |
+
" \"/common/home/users/w/wzhao/llava_helper/real_neutral\"\n",
|
1811 |
+
" ]\n",
|
1812 |
+
" \n",
|
1813 |
+
" results = []\n",
|
1814 |
+
" total_images = 0\n",
|
1815 |
+
" \n",
|
1816 |
+
" # 计算总图片数量\n",
|
1817 |
+
" for folder in image_folders:\n",
|
1818 |
+
" if os.path.exists(folder):\n",
|
1819 |
+
" for root, _, files in os.walk(folder):\n",
|
1820 |
+
" total_images += sum(1 for f in files if f.lower().endswith(('.png', '.jpg', '.jpeg')))\n",
|
1821 |
+
" \n",
|
1822 |
+
" print(f\"Total images to process: {total_images}\")\n",
|
1823 |
+
" \n",
|
1824 |
+
" processed_count = 0\n",
|
1825 |
+
" \n",
|
1826 |
+
" # 处理每个文件夹中的图片\n",
|
1827 |
+
" for folder in image_folders:\n",
|
1828 |
+
" if not os.path.exists(folder):\n",
|
1829 |
+
" print(f\"Folder not found: {folder}\")\n",
|
1830 |
+
" continue\n",
|
1831 |
+
" \n",
|
1832 |
+
" category = get_category_from_path(folder)\n",
|
1833 |
+
" print(f\"Processing folder: {folder} (Category: {category})\")\n",
|
1834 |
+
" \n",
|
1835 |
+
" for root, _, files in os.walk(folder):\n",
|
1836 |
+
" for file in files:\n",
|
1837 |
+
" if file.lower().endswith(('.png', '.jpg', '.jpeg')):\n",
|
1838 |
+
" image_path = os.path.join(root, file)\n",
|
1839 |
+
" \n",
|
1840 |
+
" # 处理图像\n",
|
1841 |
+
" description = process_image(image_path, processor, model)\n",
|
1842 |
+
" \n",
|
1843 |
+
" # 存储结果\n",
|
1844 |
+
" results.append({\n",
|
1845 |
+
" \"path\": image_path,\n",
|
1846 |
+
" \"response\": description,\n",
|
1847 |
+
" \"category\": category\n",
|
1848 |
+
" })\n",
|
1849 |
+
" \n",
|
1850 |
+
" processed_count += 1\n",
|
1851 |
+
" if processed_count % 10 == 0:\n",
|
1852 |
+
" print(f\"Processed {processed_count}/{total_images} images\")\n",
|
1853 |
+
" \n",
|
1854 |
+
" # 每处理100张图片保存一次中间结果\n",
|
1855 |
+
" if processed_count % 100 == 0:\n",
|
1856 |
+
" with open(f\"/common/home/users/w/wzhao/vqclip/json_results_newest/image_descriptions_checkpoint_{processed_count}.json\", \"w\") as f:\n",
|
1857 |
+
" json.dump(results, f, indent=2)\n",
|
1858 |
+
" \n",
|
1859 |
+
" # 保存最终结果\n",
|
1860 |
+
" with open(\"/common/home/users/w/wzhao/vqclip/json_results_newest/image_descriptions_complete.json\", \"w\") as f:\n",
|
1861 |
+
" json.dump(results, f, indent=2)\n",
|
1862 |
+
" \n",
|
1863 |
+
" print(f\"Processing complete. Results saved to image_descriptions_complete.json\")\n",
|
1864 |
+
"\n",
|
1865 |
+
"if __name__ == \"__main__\":\n",
|
1866 |
+
" # 确保已经初始化了processor和model\n",
|
1867 |
+
" # 如果没有,需要在这里添加初始化代码\n",
|
1868 |
+
" main()"
|
1869 |
+
]
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"cell_type": "code",
|
1873 |
+
"execution_count": null,
|
1874 |
+
"metadata": {},
|
1875 |
+
"outputs": [
|
1876 |
+
{
|
1877 |
+
"data": {
|
1878 |
+
"text/plain": [
|
1879 |
+
"array(['54', 'porn'], dtype='<U21')"
|
1880 |
+
]
|
1881 |
+
},
|
1882 |
+
"execution_count": 4,
|
1883 |
+
"metadata": {},
|
1884 |
+
"output_type": "execute_result"
|
1885 |
+
}
|
1886 |
+
],
|
1887 |
+
"source": [
|
1888 |
+
"import numpy as np\n",
|
1889 |
+
"np.load(\"/common/home/users/w/wzhao/vqclip/classified_results/1.npy\")"
|
1890 |
+
]
|
1891 |
+
},
|
1892 |
+
{
|
1893 |
+
"cell_type": "code",
|
1894 |
+
"execution_count": null,
|
1895 |
+
"metadata": {},
|
1896 |
+
"outputs": [
|
1897 |
+
{
|
1898 |
+
"name": "stdout",
|
1899 |
+
"output_type": "stream",
|
1900 |
+
"text": [
|
1901 |
+
"**************************************************************\n",
|
1902 |
+
"torch.Size([1, 3, 336, 336])\n",
|
1903 |
+
"this is q_latent_loss tensor(0.6994, device='cuda:0')\n",
|
1904 |
+
"This is e_latent_loss tensor(0.1748, device='cuda:0')\n",
|
1905 |
+
"34\n",
|
1906 |
+
"[1]\n",
|
1907 |
+
"1\n",
|
1908 |
+
"检测到不适当内容,生成已停止\n",
|
1909 |
+
"**************************************************************\n"
|
1910 |
+
]
|
1911 |
+
}
|
1912 |
+
],
|
1913 |
+
"source": [
|
1914 |
+
"from PIL import Image\n",
|
1915 |
+
"import time\n",
|
1916 |
+
"image = Image.open('/common/home/users/w/wzhao/qllava/00008.jpg')\n",
|
1917 |
+
"#image = Image.open('/common/home/users/w/wzhao/qllava/94915.jpg')\n",
|
1918 |
+
"#image = Image.open(\"\")\n",
|
1919 |
+
"# Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt\n",
|
1920 |
+
"# Each value in \"content\" has to be a list of dicts with types (\"text\", \"image\") \n",
|
1921 |
+
"print(\"**************************************************************\")\n",
|
1922 |
+
"\n",
|
1923 |
+
"\n",
|
1924 |
+
"conversation = [\n",
|
1925 |
+
" {\n",
|
1926 |
+
" \"role\": \"user\",\n",
|
1927 |
+
" \"content\": [\n",
|
1928 |
+
" {\"type\": \"text\", \"text\": \"Describe this image \"},\n",
|
1929 |
+
" {\"type\": \"image\"},\n",
|
1930 |
+
" ],\n",
|
1931 |
+
" }, \n",
|
1932 |
+
"]\n",
|
1933 |
+
"\n",
|
1934 |
+
"prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)\n",
|
1935 |
+
"#print(prompt)\n",
|
1936 |
+
"\n",
|
1937 |
+
"inputs = processor(images=image, text=prompt, return_tensors=\"pt\").to(model.device)\n",
|
1938 |
+
"print(inputs[\"pixel_values\"].shape)\n",
|
1939 |
+
"\n",
|
1940 |
+
"# autoregressively complete prompt\n",
|
1941 |
+
"try:\n",
|
1942 |
+
" output = model.generate(**inputs, max_new_tokens=50)\n",
|
1943 |
+
" print(processor.decode(output[0], skip_special_tokens=True))\n",
|
1944 |
+
"except ValueError as e:\n",
|
1945 |
+
" # 记录错误信息\n",
|
1946 |
+
" \n",
|
1947 |
+
" harm_class = int(str(e)))\n",
|
1948 |
+
"\n",
|
1949 |
+
" \n",
|
1950 |
+
" # 可以选择继续执行其他代码或者返回一个预设的安全输出\n",
|
1951 |
+
" print(\"检测到不适当内容,生成已停止\")\n",
|
1952 |
+
"print(\"**************************************************************\")\n",
|
1953 |
+
"#time.sleep(100)"
|
1954 |
+
]
|
1955 |
+
},
|
1956 |
+
{
|
1957 |
+
"cell_type": "code",
|
1958 |
+
"execution_count": null,
|
1959 |
+
"metadata": {},
|
1960 |
+
"outputs": [
|
1961 |
+
{
|
1962 |
+
"data": {
|
1963 |
+
"text/plain": [
|
1964 |
+
"LlavaForConditionalGeneration(\n",
|
1965 |
+
" (vision_tower): CLIPVisionModel(\n",
|
1966 |
+
" (vision_model): CLIPVisionTransformer(\n",
|
1967 |
+
" (embeddings): CLIPVisionEmbeddings(\n",
|
1968 |
+
" (patch_embedding): Conv2d(3, 1024, kernel_size=(14, 14), stride=(14, 14), bias=False)\n",
|
1969 |
+
" (position_embedding): Embedding(577, 1024)\n",
|
1970 |
+
" )\n",
|
1971 |
+
" (pre_layrnorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
|
1972 |
+
" (encoder): CLIPEncoder(\n",
|
1973 |
+
" (layers): ModuleList(\n",
|
1974 |
+
" (0-23): 24 x CLIPEncoderLayer(\n",
|
1975 |
+
" (self_attn): CLIPSdpaAttention(\n",
|
1976 |
+
" (k_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
|
1977 |
+
" (v_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
|
1978 |
+
" (q_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
|
1979 |
+
" (out_proj): Linear(in_features=1024, out_features=1024, bias=True)\n",
|
1980 |
+
" )\n",
|
1981 |
+
" (layer_norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
|
1982 |
+
" (mlp): CLIPMLP(\n",
|
1983 |
+
" (activation_fn): QuickGELUActivation()\n",
|
1984 |
+
" (fc1): Linear(in_features=1024, out_features=4096, bias=True)\n",
|
1985 |
+
" (fc2): Linear(in_features=4096, out_features=1024, bias=True)\n",
|
1986 |
+
" )\n",
|
1987 |
+
" (layer_norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
|
1988 |
+
" )\n",
|
1989 |
+
" )\n",
|
1990 |
+
" )\n",
|
1991 |
+
" (post_layernorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
|
1992 |
+
" )\n",
|
1993 |
+
" )\n",
|
1994 |
+
" (multi_modal_projector): LlavaMultiModalProjector(\n",
|
1995 |
+
" (linear_1): Linear(in_features=1024, out_features=4096, bias=True)\n",
|
1996 |
+
" (act): GELUActivation()\n",
|
1997 |
+
" (linear_2): Linear(in_features=4096, out_features=4096, bias=True)\n",
|
1998 |
+
" (vq): VectorQuantizer(\n",
|
1999 |
+
" (embedding): Embedding(16000, 4096)\n",
|
2000 |
+
" )\n",
|
2001 |
+
" (vq_cls): VectorQuantizerCLS(\n",
|
2002 |
+
" (embedding): Embedding(128, 4096)\n",
|
2003 |
+
" )\n",
|
2004 |
+
" )\n",
|
2005 |
+
" (language_model): LlamaForCausalLM(\n",
|
2006 |
+
" (model): LlamaModel(\n",
|
2007 |
+
" (embed_tokens): Embedding(32064, 4096)\n",
|
2008 |
+
" (layers): ModuleList(\n",
|
2009 |
+
" (0-31): 32 x LlamaDecoderLayer(\n",
|
2010 |
+
" (self_attn): LlamaSdpaAttention(\n",
|
2011 |
+
" (q_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
2012 |
+
" (k_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
2013 |
+
" (v_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
2014 |
+
" (o_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
2015 |
+
" (rotary_emb): LlamaRotaryEmbedding()\n",
|
2016 |
+
" )\n",
|
2017 |
+
" (mlp): LlamaMLP(\n",
|
2018 |
+
" (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
|
2019 |
+
" (up_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
|
2020 |
+
" (down_proj): Linear(in_features=11008, out_features=4096, bias=False)\n",
|
2021 |
+
" (act_fn): SiLU()\n",
|
2022 |
+
" )\n",
|
2023 |
+
" (input_layernorm): LlamaRMSNorm((4096,), eps=1e-05)\n",
|
2024 |
+
" (post_attention_layernorm): LlamaRMSNorm((4096,), eps=1e-05)\n",
|
2025 |
+
" )\n",
|
2026 |
+
" )\n",
|
2027 |
+
" (norm): LlamaRMSNorm((4096,), eps=1e-05)\n",
|
2028 |
+
" (rotary_emb): LlamaRotaryEmbedding()\n",
|
2029 |
+
" )\n",
|
2030 |
+
" (lm_head): Linear(in_features=4096, out_features=32064, bias=False)\n",
|
2031 |
+
" )\n",
|
2032 |
+
")"
|
2033 |
+
]
|
2034 |
+
},
|
2035 |
+
"execution_count": 10,
|
2036 |
+
"metadata": {},
|
2037 |
+
"output_type": "execute_result"
|
2038 |
+
}
|
2039 |
+
],
|
2040 |
+
"source": [
|
2041 |
+
"model"
|
2042 |
+
]
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"cell_type": "code",
|
2046 |
+
"execution_count": null,
|
2047 |
+
"metadata": {},
|
2048 |
+
"outputs": [
|
2049 |
+
{
|
2050 |
+
"name": "stdout",
|
2051 |
+
"output_type": "stream",
|
2052 |
+
"text": [
|
2053 |
+
"[2025-03-28 01:00:17,048] [WARNING] [real_accelerator.py:174:get_accelerator] Setting accelerator to CPU. If you have GPU or other accelerator, we were unable to detect it.\n",
|
2054 |
+
"[2025-03-28 01:00:17,049] [INFO] [real_accelerator.py:219:get_accelerator] Setting ds_accelerator to cpu (auto detect)\n"
|
2055 |
+
]
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"name": "stderr",
|
2059 |
+
"output_type": "stream",
|
2060 |
+
"text": [
|
2061 |
+
"/opt/apps/software/Anaconda3/2024.06-1/compiler_compat/ld: cannot find -laio: No such file or directory\n",
|
2062 |
+
"collect2: error: ld returned 1 exit status\n"
|
2063 |
+
]
|
2064 |
+
},
|
2065 |
+
{
|
2066 |
+
"ename": "AttributeError",
|
2067 |
+
"evalue": "'list' object has no attribute 'device'",
|
2068 |
+
"output_type": "error",
|
2069 |
+
"traceback": [
|
2070 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
2071 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
2072 |
+
"Cell \u001b[0;32mIn[6], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msave_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/common/home/users/w/wzhao/vqclip/VQLLMfinal\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 3\u001b[0m \u001b[43m)\u001b[49m\n",
|
2073 |
+
"File \u001b[0;32m~/.local/lib/python3.12/site-packages/transformers/modeling_utils.py:2971\u001b[0m, in \u001b[0;36mPreTrainedModel.save_pretrained\u001b[0;34m(self, save_directory, is_main_process, state_dict, save_function, push_to_hub, max_shard_size, safe_serialization, variant, token, save_peft_format, **kwargs)\u001b[0m\n\u001b[1;32m 2968\u001b[0m weights_name \u001b[38;5;241m=\u001b[39m ADAPTER_SAFE_WEIGHTS_NAME \u001b[38;5;28;01mif\u001b[39;00m safe_serialization \u001b[38;5;28;01melse\u001b[39;00m ADAPTER_WEIGHTS_NAME\n\u001b[1;32m 2970\u001b[0m filename_pattern \u001b[38;5;241m=\u001b[39m weights_name\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m.bin\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{suffix}\u001b[39;00m\u001b[38;5;124m.bin\u001b[39m\u001b[38;5;124m\"\u001b[39m)\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m.safetensors\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{suffix}\u001b[39;00m\u001b[38;5;124m.safetensors\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 2971\u001b[0m state_dict_split \u001b[38;5;241m=\u001b[39m \u001b[43msplit_torch_state_dict_into_shards\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2972\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate_dict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfilename_pattern\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfilename_pattern\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_shard_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_shard_size\u001b[49m\n\u001b[1;32m 2973\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2974\u001b[0m \u001b[38;5;66;03m# Save index if sharded\u001b[39;00m\n\u001b[1;32m 2975\u001b[0m index \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
|
2074 |
+
"File \u001b[0;32m~/.local/lib/python3.12/site-packages/huggingface_hub/serialization/_torch.py:369\u001b[0m, in \u001b[0;36msplit_torch_state_dict_into_shards\u001b[0;34m(state_dict, filename_pattern, max_shard_size)\u001b[0m\n\u001b[1;32m 302\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msplit_torch_state_dict_into_shards\u001b[39m(\n\u001b[1;32m 303\u001b[0m state_dict: Dict[\u001b[38;5;28mstr\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtorch.Tensor\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 304\u001b[0m \u001b[38;5;241m*\u001b[39m,\n\u001b[1;32m 305\u001b[0m filename_pattern: \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m=\u001b[39m constants\u001b[38;5;241m.\u001b[39mSAFETENSORS_WEIGHTS_FILE_PATTERN,\n\u001b[1;32m 306\u001b[0m max_shard_size: Union[\u001b[38;5;28mint\u001b[39m, \u001b[38;5;28mstr\u001b[39m] \u001b[38;5;241m=\u001b[39m MAX_SHARD_SIZE,\n\u001b[1;32m 307\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m StateDictSplit:\n\u001b[1;32m 308\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 309\u001b[0m \u001b[38;5;124;03m Split a model state dictionary in shards so that each shard is smaller than a given size.\u001b[39;00m\n\u001b[1;32m 310\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 367\u001b[0m \u001b[38;5;124;03m ```\u001b[39;00m\n\u001b[1;32m 368\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 369\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43msplit_state_dict_into_shards_factory\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 370\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 371\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_shard_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_shard_size\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mfilename_pattern\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfilename_pattern\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mget_storage_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mget_torch_storage_size\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[43mget_storage_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mget_torch_storage_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
2075 |
+
"File \u001b[0;32m~/.local/lib/python3.12/site-packages/huggingface_hub/serialization/_base.py:108\u001b[0m, in \u001b[0;36msplit_state_dict_into_shards_factory\u001b[0;34m(state_dict, get_storage_size, filename_pattern, get_storage_id, max_shard_size)\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[1;32m 107\u001b[0m \u001b[38;5;66;03m# If a `tensor` shares the same underlying storage as another tensor, we put `tensor` in the same `block`\u001b[39;00m\n\u001b[0;32m--> 108\u001b[0m storage_id \u001b[38;5;241m=\u001b[39m \u001b[43mget_storage_id\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtensor\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 109\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m storage_id \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 110\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m storage_id \u001b[38;5;129;01min\u001b[39;00m storage_id_to_tensors:\n\u001b[1;32m 111\u001b[0m \u001b[38;5;66;03m# We skip this tensor for now and will reassign to correct shard later\u001b[39;00m\n",
|
2076 |
+
"File \u001b[0;32m~/.local/lib/python3.12/site-packages/huggingface_hub/serialization/_torch.py:746\u001b[0m, in \u001b[0;36mget_torch_storage_id\u001b[0;34m(tensor)\u001b[0m\n\u001b[1;32m 735\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget_torch_storage_id\u001b[39m(tensor: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtorch.Tensor\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Optional[Tuple[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtorch.device\u001b[39m\u001b[38;5;124m\"\u001b[39m, Union[\u001b[38;5;28mint\u001b[39m, Tuple[Any, \u001b[38;5;241m.\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;241m.\u001b[39m]], \u001b[38;5;28mint\u001b[39m]]:\n\u001b[1;32m 736\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 737\u001b[0m \u001b[38;5;124;03m Return unique identifier to a tensor storage.\u001b[39;00m\n\u001b[1;32m 738\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 744\u001b[0m \u001b[38;5;124;03m Taken from https://github.com/huggingface/transformers/blob/1ecf5f7c982d761b4daaa96719d162c324187c64/src/transformers/pytorch_utils.py#L278.\u001b[39;00m\n\u001b[1;32m 745\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 746\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[43mtensor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdevice\u001b[49m\u001b[38;5;241m.\u001b[39mtype \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmeta\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 747\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 748\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
|
2077 |
+
"\u001b[0;31mAttributeError\u001b[0m: 'list' object has no attribute 'device'"
|
2078 |
+
]
|
2079 |
+
}
|
2080 |
+
],
|
2081 |
+
"source": [
|
2082 |
+
"model.save_pretrained(\n",
|
2083 |
+
" \"/common/home/users/w/wzhao/vqclip/VQLLMfinal\"\n",
|
2084 |
+
")"
|
2085 |
+
]
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"cell_type": "code",
|
2089 |
+
"execution_count": null,
|
2090 |
+
"metadata": {},
|
2091 |
+
"outputs": [
|
2092 |
+
{
|
2093 |
+
"name": "stdout",
|
2094 |
+
"output_type": "stream",
|
2095 |
+
"text": [
|
2096 |
+
"<class 'qllava_new.LlavaForConditionalGeneration'>\n"
|
2097 |
+
]
|
2098 |
+
}
|
2099 |
+
],
|
2100 |
+
"source": [
|
2101 |
+
"print(type(model))"
|
2102 |
+
]
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"cell_type": "code",
|
2106 |
+
"execution_count": 2,
|
2107 |
+
"metadata": {},
|
2108 |
+
"outputs": [
|
2109 |
+
{
|
2110 |
+
"data": {
|
2111 |
+
"text/plain": [
|
2112 |
+
"array([56, 1])"
|
2113 |
+
]
|
2114 |
+
},
|
2115 |
+
"execution_count": 2,
|
2116 |
+
"metadata": {},
|
2117 |
+
"output_type": "execute_result"
|
2118 |
+
}
|
2119 |
+
],
|
2120 |
+
"source": [
|
2121 |
+
"import numpy as np\n",
|
2122 |
+
"np.load(\"/common/home/users/w/wzhao/vqclip/classified_results_llama2/1.npy\")"
|
2123 |
+
]
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"cell_type": "code",
|
2127 |
+
"execution_count": 6,
|
2128 |
+
"metadata": {},
|
2129 |
+
"outputs": [
|
2130 |
+
{
|
2131 |
+
"name": "stdout",
|
2132 |
+
"output_type": "stream",
|
2133 |
+
"text": [
|
2134 |
+
"统计结果已保存到字典并导出到:\n",
|
2135 |
+
"- JSON: /common/home/users/w/wzhao/vqclip/classification_stats.json\n",
|
2136 |
+
"- Pickle: /common/home/users/w/wzhao/vqclip/classification_stats.pkl\n",
|
2137 |
+
"\n",
|
2138 |
+
"基本统计信息:\n",
|
2139 |
+
"总共发现 8 个不同的类别\n",
|
2140 |
+
"总共处理了 21213 个元素\n",
|
2141 |
+
"\n",
|
2142 |
+
"各类别的统计摘要:\n",
|
2143 |
+
"类别 0: 包含 5413 个元素,有 43 个不同的元素ID\n",
|
2144 |
+
" 出现频率最高的元素: ID 16: 615次, ID 60: 609次, ID 14: 566次\n",
|
2145 |
+
"类别 1: 包含 5554 个元素,有 4 个不同的元素ID\n",
|
2146 |
+
" 出现频率最高的元素: ID 56: 2067次, ID 7: 1430次, ID 34: 1180次\n",
|
2147 |
+
"类别 2: 包含 1473 个元素,有 3 个不同的元素ID\n",
|
2148 |
+
" 出现频率最高的元素: ID 13: 778次, ID 24: 488次, ID 23: 207次\n",
|
2149 |
+
"类别 3: 包含 2134 个元素,有 4 个不同的元素ID\n",
|
2150 |
+
" 出现频率最高的元素: ID 46: 840次, ID 33: 641次, ID 39: 351次\n",
|
2151 |
+
"类别 4: 包含 1416 个元素,有 2 个不同的元素ID\n",
|
2152 |
+
" 出现频率最高的元素: ID 22: 748次, ID 42: 668次\n",
|
2153 |
+
"类别 5: 包含 2785 个元素,有 2 个不同的元素ID\n",
|
2154 |
+
" 出现频率最高的元素: ID 52: 1654次, ID 4: 1131次\n",
|
2155 |
+
"类别 6: 包含 1723 个元素,有 5 个不同的元素ID\n",
|
2156 |
+
" 出现频率最高的元素: ID 20: 555次, ID 57: 481次, ID 17: 350次\n",
|
2157 |
+
"类别 7: 包含 715 个元素,有 1 个不同的元素ID\n",
|
2158 |
+
" 出现频率最高的元素: ID 40: 715次\n"
|
2159 |
+
]
|
2160 |
+
}
|
2161 |
+
],
|
2162 |
+
"source": [
|
2163 |
+
"import os\n",
|
2164 |
+
"import numpy as np\n",
|
2165 |
+
"import json\n",
|
2166 |
+
"from collections import defaultdict\n",
|
2167 |
+
"import pickle\n",
|
2168 |
+
"\n",
|
2169 |
+
"# 定义目录路径\n",
|
2170 |
+
"directory_path = '/common/home/users/w/wzhao/vqclip/classified_results_llama2'\n",
|
2171 |
+
"\n",
|
2172 |
+
"# 创建一个嵌套字典,用于存储每个类别中每个元素ID出现的次数\n",
|
2173 |
+
"class_element_counts = defaultdict(lambda: defaultdict(int))\n",
|
2174 |
+
"# 创建一个字典用于存储每个类别的总计数\n",
|
2175 |
+
"class_total_counts = defaultdict(int)\n",
|
2176 |
+
"\n",
|
2177 |
+
"# 遍历目录中的所有.npy文件\n",
|
2178 |
+
"try:\n",
|
2179 |
+
" for filename in os.listdir(directory_path):\n",
|
2180 |
+
" if filename.endswith('.npy'):\n",
|
2181 |
+
" file_path = os.path.join(directory_path, filename)\n",
|
2182 |
+
" \n",
|
2183 |
+
" # 加载.npy文件\n",
|
2184 |
+
" data = np.load(file_path)\n",
|
2185 |
+
" \n",
|
2186 |
+
" # 确保数据格式正确\n",
|
2187 |
+
" if data.size == 2:\n",
|
2188 |
+
" element_id = int(data[0]) # 确保是整数\n",
|
2189 |
+
" class_id = int(data[1]) # 确保是整数\n",
|
2190 |
+
" \n",
|
2191 |
+
" # 增加该元素在对应类别中的计数\n",
|
2192 |
+
" class_element_counts[class_id][element_id] += 1\n",
|
2193 |
+
" # 增加该类别的总计数\n",
|
2194 |
+
" class_total_counts[class_id] += 1\n",
|
2195 |
+
" else:\n",
|
2196 |
+
" print(f\"警告: 文件 {filename} 的数据格式不符合预期,已跳过\")\n",
|
2197 |
+
" \n",
|
2198 |
+
" # 将defaultdict转换为普通dict以便序列化\n",
|
2199 |
+
" result_dict = {\n",
|
2200 |
+
" \"class_totals\": dict(class_total_counts),\n",
|
2201 |
+
" \"class_elements\": {\n",
|
2202 |
+
" class_id: dict(elements) \n",
|
2203 |
+
" for class_id, elements in class_element_counts.items()\n",
|
2204 |
+
" }\n",
|
2205 |
+
" }\n",
|
2206 |
+
" \n",
|
2207 |
+
" # 保存结果到JSON文件\n",
|
2208 |
+
" output_json_path = os.path.join(os.path.dirname(directory_path), \"classification_stats.json\")\n",
|
2209 |
+
" with open(output_json_path, 'w') as f:\n",
|
2210 |
+
" json.dump(result_dict, f, indent=2)\n",
|
2211 |
+
" \n",
|
2212 |
+
" # 也保存为Python pickle格式,这样在后续Python处理中更方便\n",
|
2213 |
+
" output_pickle_path = os.path.join(os.path.dirname(directory_path), \"classification_stats.pkl\")\n",
|
2214 |
+
" with open(output_pickle_path, 'wb') as f:\n",
|
2215 |
+
" pickle.dump(result_dict, f)\n",
|
2216 |
+
" \n",
|
2217 |
+
" # 打印一些基本统计信息\n",
|
2218 |
+
" print(f\"统计结果已保存到字典并导出到:\")\n",
|
2219 |
+
" print(f\"- JSON: {output_json_path}\")\n",
|
2220 |
+
" print(f\"- Pickle: {output_pickle_path}\")\n",
|
2221 |
+
" print(\"\\n基本统计信息:\")\n",
|
2222 |
+
" print(f\"总共发现 {len(class_total_counts)} 个不同的类别\")\n",
|
2223 |
+
" total_elements = sum(class_total_counts.values())\n",
|
2224 |
+
" print(f\"总共处理了 {total_elements} 个元素\")\n",
|
2225 |
+
" \n",
|
2226 |
+
" # 打印每个类别的样本统计\n",
|
2227 |
+
" print(\"\\n各类别的统计摘要:\")\n",
|
2228 |
+
" for class_id in sorted(class_total_counts.keys()):\n",
|
2229 |
+
" print(f\"类别 {class_id}: 包含 {class_total_counts[class_id]} 个元素,有 {len(class_element_counts[class_id])} 个不同的元素ID\")\n",
|
2230 |
+
" \n",
|
2231 |
+
" # 获取该类别中出现次数最多的3个元素\n",
|
2232 |
+
" sorted_elements = sorted(class_element_counts[class_id].items(), \n",
|
2233 |
+
" key=lambda x: x[1], reverse=True)[:3]\n",
|
2234 |
+
" \n",
|
2235 |
+
" # 打印这些元素及其出现次数\n",
|
2236 |
+
" print(f\" 出现频率最高的元素: \" + \", \".join([f\"ID {e_id}: {count}次\" for e_id, count in sorted_elements]))\n",
|
2237 |
+
"\n",
|
2238 |
+
"except Exception as e:\n",
|
2239 |
+
" print(f\"发生错误: {e}\")"
|
2240 |
+
]
|
2241 |
+
}
|
2242 |
+
],
|
2243 |
+
"metadata": {
|
2244 |
+
"kernelspec": {
|
2245 |
+
"display_name": "Python 3 (ipykernel)",
|
2246 |
+
"language": "python",
|
2247 |
+
"name": "python3"
|
2248 |
+
},
|
2249 |
+
"language_info": {
|
2250 |
+
"codemirror_mode": {
|
2251 |
+
"name": "ipython",
|
2252 |
+
"version": 3
|
2253 |
+
},
|
2254 |
+
"file_extension": ".py",
|
2255 |
+
"mimetype": "text/x-python",
|
2256 |
+
"name": "python",
|
2257 |
+
"nbconvert_exporter": "python",
|
2258 |
+
"pygments_lexer": "ipython3",
|
2259 |
+
"version": "3.12.4"
|
2260 |
+
}
|
2261 |
+
},
|
2262 |
+
"nbformat": 4,
|
2263 |
+
"nbformat_minor": 2
|
2264 |
+
}
|