# coding=utf-8 # Copyright 2024 the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Llava-NeXT model.""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn import torch.nn.functional as F from transformers.activations import ACT2FN from transformers.generation import GenerationMixin from transformers.image_processing_utils import select_best_resolution from transformers.modeling_outputs import ModelOutput from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from transformers.models.auto import AutoModel, AutoModelForCausalLM from transformers.models.llava_next.configuration_llava_next import LlavaNextConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LlavaNextConfig" from pathlib import Path def save_list_to_incremental_file(data_list, save_dir="/common/home/users/w/wzhao/vqclip/llava_next_tensors"): """ 将列表保存到指定目录,文件名按数字递增 Args: data_list: 要保存的列表数据 save_dir: 保存目录路径 Returns: 保存的文件路径 """ # 确保目录存在 save_dir = Path(save_dir) save_dir.mkdir(parents=True, exist_ok=True) # 查找可用的文件名 index = 1 while True: file_path = save_dir / f"{index}.npy" if not file_path.exists(): break index += 1 # 将列表转换为numpy数组并保存 np_array = np.array(data_list) np.save(str(file_path), np_array) return file_path def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): """ Calculate the shape of the image patch grid after the preprocessing for images of any resolution. Args: image_size (`tuple`): The size of the input image in the format (width, height). grid_pinpoints (`List`): A list containing possible resolutions. Each item in the list should be a tuple or list of the form `(height, width)`. patch_size (`int`): The size of each image patch. Returns: tuple: The shape of the image patch grid in the format (width, height). """ if not isinstance(grid_pinpoints, list): raise TypeError("grid_pinpoints should be a list of tuples or lists") # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate if not isinstance(image_size, (list, tuple)): if not isinstance(image_size, (torch.Tensor, np.ndarray)): raise TypeError( f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor" ) image_size = image_size.tolist() height, width = select_best_resolution(image_size, grid_pinpoints) return height // patch_size, width // patch_size def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int): """ Calculate the number of patches after the preprocessing for images of any resolution. Args: image_size (`torch.LongTensor` or `np.ndarray` or `Tuple[int, int]`): The size of the input image in the format (height, width). ? grid_pinpoints (`List`): A list containing possible resolutions. Each item in the list should be a tuple or list of the form `(height, width)`. patch_size (`int`): The size of each image patch. Returns: int: the number of patches """ if not isinstance(grid_pinpoints, list): raise TypeError("grid_pinpoints should be a list of tuples or lists") # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate if not isinstance(image_size, (list, tuple)): if not isinstance(image_size, (torch.Tensor, np.ndarray)): raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}") image_size = image_size.tolist() best_resolution = select_best_resolution(image_size, grid_pinpoints) height, width = best_resolution num_patches = 0 # consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1 for i in range(0, height, patch_size): for j in range(0, width, patch_size): num_patches += 1 # add the base patch num_patches += 1 return num_patches def unpad_image(tensor, original_size): """ Unpads a PyTorch tensor of a padded and resized image. Args: tensor (`torch.Tensor`): The image tensor, assumed to be of shape (num_channels, height, width). original_size (`tuple`): The original size of the image (height, width). Returns: `torch.Tensor`: The unpadded image tensor. """ if not isinstance(original_size, (list, tuple)): if not isinstance(original_size, (torch.Tensor, np.ndarray)): raise TypeError( f"image_size invalid type: {type(original_size)} not valid, should be either list, tuple, np.ndarray or tensor" ) original_size = original_size.tolist() original_height, original_width = original_size current_height, current_width = tensor.shape[1:] original_aspect_ratio = original_width / original_height current_aspect_ratio = current_width / current_height if original_aspect_ratio > current_aspect_ratio: scale_factor = current_width / original_width new_height = int(original_height * scale_factor) padding = (current_height - new_height) // 2 unpadded_tensor = tensor[:, padding : current_height - padding, :] else: scale_factor = current_height / original_height new_width = int(original_width * scale_factor) padding = (current_width - new_width) // 2 unpadded_tensor = tensor[:, :, padding : current_width - padding] return unpadded_tensor @dataclass class LlavaNextCausalLMOutputWithPast(ModelOutput): """ Base class for LlavaNext causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None class VectorQuantizer(nn.Module): def __init__(self, num_embeddings: int, embedding_dim: int, commitment_cost: float = 0.25): super().__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim self.commitment_cost = commitment_cost # Embedding table self.embedding = nn.Embedding(num_embeddings, embedding_dim) self.embedding.weight.data.uniform_(-1/num_embeddings, 1/num_embeddings) def forward(self, inputs): self.embedding.weight.data = self.embedding.weight.data.to(dtype=inputs.dtype) # Convert inputs from BCHW -> BHWC inputs = inputs.permute(0, 2, 1).contiguous() input_shape = inputs.shape # Flatten input flat_input = inputs.view(-1, self.embedding_dim) # Calculate distances distances = (torch.sum(flat_input**2, dim=1, keepdim=True) + torch.sum(self.embedding.weight**2, dim=1) - 2 * torch.matmul(flat_input, self.embedding.weight.t())) # Encoding encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) encodings = torch.zeros(encoding_indices.shape[0], self.num_embeddings, device=inputs.device).to(inputs.dtype) encodings.scatter_(1, encoding_indices, 1) #self.embedding.weight = self.embedding.weight.to(input_type) # Quantize and unflatten #print(inputs.dtype) #print(self.embedding.weight.dtype) quantized = torch.matmul(encodings, self.embedding.weight).view(input_shape) # Loss e_latent_loss = torch.mean((quantized.detach() - inputs)**2) q_latent_loss = torch.mean((quantized - inputs.detach())**2) loss = q_latent_loss + self.commitment_cost * e_latent_loss print("this is q_latent_loss", q_latent_loss) print("This is e_latent_loss", self.commitment_cost * e_latent_loss) quantized = inputs + (quantized - inputs).detach() avg_probs = torch.mean(encodings, dim=0) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) # Convert quantized from BHWC -> BCHW return quantized.permute(0, 2, 1).contiguous(), loss, perplexity # Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->LlavaNext class LlavaNextMultiModalProjector(nn.Module): def __init__(self, config: LlavaNextConfig): super().__init__() self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) self.vq = VectorQuantizer( num_embeddings=16000, # codebook size embedding_dim=config.text_config.hidden_size, # dimension of each embedding vector commitment_cost=0.5 ) self.vq_cls = VectorQuantizerCLS( num_embeddings=128, embedding_dim=4096, commitment_cost=0.25, use_cosine=True ) def forward(self, image_features): cls_features = image_features[: , :1] cls_features = self.linear_1(cls_features) cls_features = self.act(cls_features) cls_features = self.linear_2(cls_features) cls_features = cls_features[:, 0:] cls_features = cls_features.mean(dim=0, keepdim=True).squeeze(0) #save_list_to_incremental_file(cls_features.cpu().detach().numpy()) quantized, loss, perplexity, indices = self.vq_cls(cls_features) categories = self.vq_cls.get_category_from_index(indices) indices = indices.cpu().numpy() print(indices) print(categories) if categories[0] != 0: raise ValueError([indices, categories[0]]) #save_list_to_incremental_file(save_list) # tensor(54) # ['porn'] image_features = image_features[: , 1:] hidden_states = self.linear_1(image_features) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) quantized_features, vq_loss, perplexity = self.vq(hidden_states) print(quantized_features.shape) return quantized_features, vq_loss LLAVA_NEXT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LlavaNextConfig`] or [`LlavaNextVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ class VectorQuantizerCLS(nn.Module): def __init__(self, num_embeddings: int = 64, embedding_dim: int = 4096, commitment_cost: float = 0.25, codebook_path: str = None, mapping_path: str = None, use_cosine: bool = True, randomize_indices: bool = True): super().__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim self.commitment_cost = commitment_cost self.use_cosine = use_cosine # Embedding table self.embedding = nn.Embedding(num_embeddings, embedding_dim) self.embedding.weight.data.uniform_(-1/num_embeddings, 1/num_embeddings) # 初始化合适大小的buffer,避免加载时大小不匹配 self.register_buffer('_category_mapping_indices', torch.zeros(num_embeddings, dtype=torch.long)) self.register_buffer('_category_mapping_names', torch.zeros(num_embeddings, dtype=torch.long)) # 非持久化属性 self.center_to_category = None # 加载预先计算的codebook if codebook_path is not None and mapping_path is not None: self.load_codebook(codebook_path, mapping_path, randomize_indices) def load_codebook(self, codebook_path, mapping_path, randomize_indices=True): """加载预计算的codebook和类别映射,并可选择随机化索引""" try: # 加载codebook print(f"Loading codebook from {codebook_path}") centers = np.load(codebook_path) print(f"Loaded codebook with shape: {centers.shape}") # 加载类别映射 print(f"Loading category mappings from {mapping_path}") with open(mapping_path, 'rb') as f: mappings = pickle.load(f) # 将文本类别映射为数字 category_mapping_text = mappings['category_mapping'] classes = {'neutral':0, 'porn':1, 'gun':2, 'cigarette':3, 'alcohol':4, 'knife':5, 'blood':6, 'insulting_gesture':7} # 转换为数字映射 center_category_mapping = {} for i, category_text in enumerate(category_mapping_text): center_category_mapping[i] = classes.get(category_text, 0) # 默认为neutral(0) print(f"Loaded {len(center_category_mapping)} category mappings") # 准备数据 actual_centers = centers.shape[0] print(f"Actual centers: {actual_centers}") # 更新num_embeddings为实际中心点数量 self.num_embeddings = actual_centers print(f"Setting num_embeddings to {self.num_embeddings}") # 如果需要随机化索引,创建随机排列 if randomize_indices: print("Randomizing codebook indices to prevent category clustering") # 创建随机排列 permutation = list(range(actual_centers)) random.shuffle(permutation) inverse_permutation = {v: k for k, v in enumerate(permutation)} # 应用随机排列到中心点和类别映射 permuted_centers = np.zeros_like(centers) permuted_categories = {} for new_idx, old_idx in enumerate(permutation): permuted_centers[new_idx] = centers[old_idx] if old_idx < len(center_category_mapping): permuted_categories[new_idx] = center_category_mapping[old_idx] # 使用随机化后的数据 centers = permuted_centers self.center_to_category = permuted_categories # 打印一些随机化后的映射示例 print("Sample randomized mappings:") for i in range(min(5, len(self.center_to_category))): print(f" New index {i}: {self.center_to_category[i]}") else: # 不随机化,直接使用原始映射 self.center_to_category = {i: center_category_mapping[i] for i in range(min(actual_centers, len(center_category_mapping)))} # 验证类别映射是否完整 for i in range(self.num_embeddings): if i not in self.center_to_category: print(f"Warning: No category mapping for center {i}, setting to 0") self.center_to_category[i] = 0 # 用0代替"unknown" # 创建embedding数据并更新 embedding_data = torch.tensor(centers, dtype=torch.float32) # 重新创建embedding层以匹配实际大小 self.embedding = nn.Embedding(self.num_embeddings, self.embedding_dim) self.embedding.weight.data.copy_(embedding_data) # 重新注册buffer以匹配新的大小 self.register_buffer('_category_mapping_indices', torch.zeros(self.num_embeddings, dtype=torch.long)) self.register_buffer('_category_mapping_names', torch.zeros(self.num_embeddings, dtype=torch.long)) # 将类别映射存储到buffer中(用于state_dict) self._store_category_mapping() print(f"Successfully loaded codebook with {self.num_embeddings} entries") # 分析类别分布 category_counts = {} for category in self.center_to_category.values(): if category in category_counts: category_counts[category] += 1 else: category_counts[category] = 1 print("Category distribution in codebook:") for category, count in sorted(category_counts.items()): print(f" {category}: {count} centers") return True except Exception as e: print(f"Error loading codebook: {e}") import traceback traceback.print_exc() print("Using random initialization instead") return False def _store_category_mapping(self): """将类别映射存储到模型的buffer中,以便在state_dict中保存""" if not self.center_to_category: warnings.warn("No category mapping to store") return # 获取所有类别ID all_categories = sorted(set(self.center_to_category.values())) # 创建索引和对应类别ID的映射 indices = list(self.center_to_category.keys()) category_ids = [self.center_to_category[idx] for idx in indices] # 确保indices数组长度与buffer大小一致 if len(indices) != self._category_mapping_indices.size(0): # 重新注册buffer以匹配大小 self.register_buffer('_category_mapping_indices', torch.zeros(len(indices), dtype=torch.long)) self.register_buffer('_category_mapping_names', torch.zeros(len(indices), dtype=torch.long)) # 存储到buffer中 self._category_mapping_indices.copy_(torch.tensor(indices, dtype=torch.long)) self._category_mapping_names.copy_(torch.tensor(category_ids, dtype=torch.long)) print(f"Stored category mapping with {len(indices)} entries and {len(all_categories)} unique categories") def _load_category_mapping(self): """从模型的buffer恢复类别映射""" if not hasattr(self, '_category_mapping_indices') or self._category_mapping_indices.numel() == 0: warnings.warn("No stored category mapping found") return {} # 重建类别映射字典 indices = self._category_mapping_indices.tolist() category_ids = self._category_mapping_names.tolist() mapping = {} for idx, cat_id in zip(indices, category_ids): mapping[idx] = cat_id return mapping def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): """自定义state_dict加载方法,处理buffer大小不匹配的问题""" # 检查并调整buffer大小,以匹配加载的state_dict indices_key = prefix + '_category_mapping_indices' names_key = prefix + '_category_mapping_names' if indices_key in state_dict and names_key in state_dict: indices_size = state_dict[indices_key].size() names_size = state_dict[names_key].size() # 重新注册buffer以匹配加载的大小 if hasattr(self, '_category_mapping_indices') and self._category_mapping_indices.size() != indices_size: self.register_buffer('_category_mapping_indices', torch.zeros(indices_size, dtype=torch.long)) if hasattr(self, '_category_mapping_names') and self._category_mapping_names.size() != names_size: self.register_buffer('_category_mapping_names', torch.zeros(names_size, dtype=torch.long)) # 调用父类方法加载常规参数 super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) # 在加载完成后重建类别映射 self.center_to_category = self._load_category_mapping() # 更新num_embeddings以匹配加载的模型 if hasattr(self, 'embedding') and hasattr(self.embedding, 'weight'): self.num_embeddings = self.embedding.weight.size(0) def forward(self, inputs): """ 前向传播,专门处理(1, 4096)形状的输入 Args: inputs: 形状为(1, 4096)的特征向量 Returns: quantized: 量化后的特征向量 loss: 承诺损失 perplexity: 困惑度 encoding_indices: 编码索引 """ # 验证输入形状 if inputs.shape != (1, 4096): raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}") # 确保embedding权重与输入使用相同的数据类型 self.embedding.weight.data = self.embedding.weight.data.to(dtype=inputs.dtype) # 直接使用输入,不需要形状转换 flat_input = inputs # 计算与codebook中各向量的距离 if self.use_cosine: # 归一化向量进行余弦相似度计算 normalized_input = F.normalize(flat_input, p=2, dim=1) normalized_weights = F.normalize(self.embedding.weight, p=2, dim=1) # 计算余弦相似度 cosine_sim = torch.matmul(normalized_input, normalized_weights.t()) # 将相似度转换为距离(最大相似度对应最小距离) distances = 1 - cosine_sim else: # 使用欧氏距离 distances = (torch.sum(flat_input**2, dim=1, keepdim=True) + torch.sum(self.embedding.weight**2, dim=1) - 2 * torch.matmul(flat_input, self.embedding.weight.t())) # 找到最近的编码向量索引 encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) # 创建one-hot编码 encodings = torch.zeros(encoding_indices.shape[0], self.num_embeddings, device=inputs.device).to(inputs.dtype) encodings.scatter_(1, encoding_indices, 1) # 量化 quantized = torch.matmul(encodings, self.embedding.weight) # 计算损失 e_latent_loss = torch.mean((quantized.detach() - flat_input)**2) q_latent_loss = torch.mean((quantized - flat_input.detach())**2) loss = q_latent_loss + self.commitment_cost * e_latent_loss print("this is q_latent_loss", q_latent_loss) print("This is e_latent_loss", self.commitment_cost * e_latent_loss) # Straight-through estimator quantized = flat_input + (quantized - flat_input).detach() # 计算perplexity avg_probs = torch.mean(encodings, dim=0) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) # 返回量化后的向量、损失、困惑度和索引 return quantized, loss, perplexity, encoding_indices.squeeze() def encode(self, inputs): """ 仅执行编码过程,返回索引 Args: inputs: 形状为(1, 4096)的特征向量 Returns: 编码索引 """ # 验证输入形状 if inputs.shape != (1, 4096): raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}") with torch.no_grad(): # 计算距离 if self.use_cosine: normalized_input = F.normalize(inputs, p=2, dim=1) normalized_weights = F.normalize(self.embedding.weight, p=2, dim=1) cosine_sim = torch.matmul(normalized_input, normalized_weights.t()) distances = 1 - cosine_sim else: distances = (torch.sum(inputs**2, dim=1, keepdim=True) + torch.sum(self.embedding.weight**2, dim=1) - 2 * torch.matmul(inputs, self.embedding.weight.t())) # 找到最近的编码向量索引 encoding_indices = torch.argmin(distances, dim=1) return encoding_indices def get_category_from_index(self, indices): """ 根据索引获取对应的类别编号 Args: indices: 编码索引 Returns: 类别编号列表 """ # 如果没有类别映射,尝试从buffer恢复 if self.center_to_category is None: self.center_to_category = self._load_category_mapping() if not self.center_to_category: return [0] * indices.numel() # 使用0(neutral)代替"unknown" # 将索引张量转为NumPy数组 indices_np = indices.cpu().numpy().flatten() # 获取类别 categories = [] for idx in indices_np: idx_int = int(idx) category = self.center_to_category.get(idx_int, 0) # 默认为0(neutral) categories.append(category) return categories def classify(self, inputs): """ 对输入特征进行分类,返回类别编号和索引 Args: inputs: 形状为(1, 4096)的特征向量 Returns: categories: 预测的类别编号 indices: 编码索引 """ # 验证输入形状 if inputs.shape != (1, 4096): raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}") indices = self.encode(inputs) categories = self.get_category_from_index(indices) return categories, indices @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", LLAVA_NEXT_START_DOCSTRING, ) # Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->LlavaNext,llava->llava_next class LlavaNextPreTrainedModel(PreTrainedModel): config_class = LlavaNextConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["LlavaNextVisionAttention"] _skip_keys_device_placement = "past_key_values" _supports_cache_class = True _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): # important: this ported version of LlavaNext isn't meant for training from scratch - only # inference and fine-tuning - so the proper init weights code has been removed - the original codebase # https://github.com/haotian-liu/LLaVA/tree/main/llava_next should serve for that purpose std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() LLAVA_NEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`LlavaNextImageProcessor.__call__`] for details. [`LlavaProcessor`] uses [`LlavaNextImageProcessor`] for processing images. image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*): The sizes of the images in the batch, being (height, width) for each image. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. vision_feature_layer (`int`, *optional*, defaults to -2): The index of the layer to select the vision feature. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features. If `"full"`, the full vision features are used. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( """The LLAVA-NeXT model which consists of a vision backbone and a language model.""", LLAVA_NEXT_START_DOCSTRING, ) class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel, GenerationMixin): def __init__(self, config: LlavaNextConfig): super().__init__(config) self.vision_tower = AutoModel.from_config(config.vision_config) self.multi_modal_projector = LlavaNextMultiModalProjector(config) embed_std = 1 / math.sqrt(config.text_config.hidden_size) self.image_newline = nn.Parameter(torch.randn(config.text_config.hidden_size, dtype=self.dtype) * embed_std) self.vocab_size = config.text_config.vocab_size self.language_model = AutoModelForCausalLM.from_config(config.text_config) self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides self.post_init() @property def padding_side(self): return self._padding_side @padding_side.setter def padding_side(self, padding_side: str): if padding_side not in ["left", "right"]: raise ValueError(f"{padding_side} is not `left` or `right`.") self._padding_side = padding_side # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings def get_input_embeddings(self): return self.language_model.get_input_embeddings() # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings def get_output_embeddings(self): return self.language_model.get_output_embeddings() # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder def set_decoder(self, decoder): self.language_model.set_decoder(decoder) # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder def get_decoder(self): return self.language_model.get_decoder() # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights def tie_weights(self): return self.language_model.tie_weights() # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) # update vocab size self.config.text_config.vocab_size = model_embeds.num_embeddings self.vocab_size = model_embeds.num_embeddings return model_embeds def _merge_input_ids_with_image_features( self, image_features, feature_lens, inputs_embeds, input_ids, attention_mask, position_ids=None, labels=None, image_token_index=None, ignore_index=-100, ): """ Merge input_ids with with image features into final embeddings Args: image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`): All vision vectors of all images in the batch feature_lens (`torch.LongTensor` of shape `(num_images)`): The length of visual embeddings of each image as stacked in `image_features` inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`): Token embeddings before merging with visual embeddings input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Input_ids of tokens, possibly filled with image token attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Mask to avoid performing attention on padding token indices. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) :abels need to be recalculated to support training (if provided) image_token_index (`int`, *optional*) Token id used to indicate the special "image" token. Defaults to `config.image_token_index` ignore_index (`int`, *optional*) Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100. Returns: final_embedding, final_attention_mask, position_ids, final_labels Explanation: each image has variable length embeddings, with length specified by feature_lens image_features is concatenation of all visual embed vectors task: fill each with the correct number of visual embeddings Example: X (5 patches), Y (3 patches), Z (8) X, Y are in the same sequence (in-context learning) if right padding input_ids: [ a b c d e f X g h i j k Y l m o p q r Z s t u v _ _ _ _ _ _ ] input_ids should be: [ a b c d e f X X X X X g h i j k Y Y Y l m o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _ ] labels should be: [ a b c d e f _ _ _ _ _ g h i j k _ _ _ l m o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _ ] elif left padding input_ids: [ a b c d e f X g h i j k Y l m _ _ _ _ _ _ o p q r Z s t u v ] input_ids should be: [ a b c d e f X X X X X g h i j k Y Y Y l m _ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v ] labels should be: [ a b c d e f _ _ _ _ _ g h i j k _ _ _ l m _ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v ] Edge cases: * If tokens are same but image token sizes are different, then cannot infer left or right padding ```python cat_img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) chart_img = Image.open(requests.get("https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true", stream=True).raw) prompts = [ "[INST] \nWhat is shown in this image? [/INST]", "[INST] \nWhat is shown in this image? [/INST]", ] inputs = processor(prompts, [chart_img, cat_img], return_tensors='pt', padding=True).to("cuda") chart_img has 2634 tokens, while cat_img has 2340 tokens ``` input_ids: [ a b c d X g h i j Y k l m n ] where X is 3 tokens while Y is 5, this mean after merge if left-padding (batched generation) input_ids should be: [ _ _ a b c d X X X g h i j Y Y Y Y Y k l m n ] elif (right padding) (training) input_ids should be: [ a b c d X X X g h _ _ i j Y Y Y Y Y k l m n ] """ image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index if self.training and self.padding_side == "left": logger.warning_once( "Padding side is set to 'left' but the model is in training mode. For training " "it is recommended to set `model.padding_side='right' and `processor.tokenizer.padding_side='right'`. " "If that's intended, ignore this warning" ) if not self.training and self.padding_side == "right": logger.warning_once( "Padding side is set to 'right' but the model is in inference mode. For correct " "generation results, please set `model.padding_side='left'` and `processor.tokenizer.padding_side='left'`. " "If that's intended, ignore this warning" ) with torch.no_grad(): # ! in llava 1.6, number of patches is variable num_images = feature_lens.size(0) num_image_features, embed_dim = image_features.shape if feature_lens.sum() != num_image_features: raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}") batch_size = input_ids.shape[0] _left_padding = torch.any(attention_mask[:, 0] == 0) _right_padding = torch.any(attention_mask[:, -1] == 0) left_padding = self.padding_side == "left" if batch_size > 1: if _left_padding and _right_padding: raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}") elif _right_padding and left_padding: left_padding = False elif _left_padding and not left_padding: left_padding = True # Whether to turn off right padding # 1. Create a mask to know where special image tokens are special_image_token_mask = input_ids == image_token_index # special_image_token_mask: [bsz, seqlen] num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) # num_special_image_tokens: [bsz] # Reserve for padding of num_images total_num_special_image_tokens = torch.sum(special_image_token_mask) if total_num_special_image_tokens != num_images: raise ValueError( f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})." ) # Compute the maximum embed dimension # max_image_feature_lens is max_feature_lens per batch feature_lens = feature_lens.to(input_ids.device) feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0) feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device) embed_sequence_lengths = ( (attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum ) max_embed_dim = embed_sequence_lengths.max() batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1)) # 2. Compute the positions where text should be written # Calculate new positions for text tokens in merged image-text sequence. # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens. # `torch.cumsum` computes how each image token shifts subsequent text token positions. # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. # ! instead of special_image_token_mask * (num_image_patches - 1) # special_image_token_mask * (num_feature_len - 1) special_image_token_mask = special_image_token_mask.long() special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1 new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1 if left_padding: # shift right token positions so that they are ending at the same number # the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:] new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:] text_to_overwrite = new_token_positions[batch_indices, non_image_indices] # 3. Create the full embedding, already padded to the maximum position final_embedding = torch.zeros( batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device ) final_attention_mask = torch.zeros( batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device ) final_input_ids = torch.full( (batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device ) # In case the Vision model or the Language model has been offloaded to CPU, we need to manually # set the corresponding tensors into their correct target device. target_device = inputs_embeds.device batch_indices, non_image_indices, text_to_overwrite = ( batch_indices.to(target_device), non_image_indices.to(target_device), text_to_overwrite.to(target_device), ) attention_mask = attention_mask.to(target_device) input_ids = input_ids.to(target_device) # 4. Fill the embeddings based on the mask. If we have ["hey" "", "how", "are"] # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices] final_labels = None if labels is not None: labels = labels.to(target_device) final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long) final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835) with torch.no_grad(): image_to_overwrite = torch.full( (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device ) image_to_overwrite[batch_indices, text_to_overwrite] = False embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device) embed_indices = embed_indices.expand(batch_size, max_embed_dim) embed_seq_lens = embed_sequence_lengths[:, None].to(target_device) if left_padding: # exclude padding on the left max_embed_dim = max_embed_dim.to(target_device) val = (max_embed_dim - embed_indices) <= embed_seq_lens else: # exclude padding on the right val = embed_indices < embed_seq_lens image_to_overwrite &= val if image_to_overwrite.sum() != num_image_features: raise ValueError( f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. " f"The number of image tokens is {torch.sum(special_image_token_mask)} while" f" the number of image given to the model is {num_images}. " f"This prevents correct indexing and breaks batch generation." ) final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) final_attention_mask |= image_to_overwrite position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids def pack_image_features(self, image_features, image_sizes, vision_feature_select_strategy, image_newline=None): """ Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors. Args: image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`) List of image feature tensor, each contains all the visual feature of all patches. image_sizes (`torch.Tensor` of shape `(num_images, 2)`) Actual image size of each images (H, W). vision_feature_select_strategy (`str`) The feature selection strategy used to select the vision feature from the vision backbone. image_newline (`torch.Tensor` of shape `(embed_dim)`) New line embedding vector. Returns: image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`) feature_lens (`List[int]`) token length of each image in image_features """ new_image_features = [] feature_lens = [] for image_idx, image_feature in enumerate(image_features): if image_feature.shape[0] > 1: base_image_feature = image_feature[0] image_feature = image_feature[1:] height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size if vision_feature_select_strategy == "default": expected_num_patches = height * width elif vision_feature_select_strategy == "full": expected_num_patches = height * width + 1 if expected_num_patches != base_image_feature.shape[0]: raise ValueError("The number of patches is not consistent with the image size.") num_patch_height, num_patch_width = get_anyres_image_grid_shape( image_sizes[image_idx], self.config.image_grid_pinpoints, self.config.vision_config.image_size, ) image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() image_feature = image_feature.flatten(1, 2).flatten(2, 3) image_feature = unpad_image(image_feature, image_sizes[image_idx]) if image_newline is not None: image_feature = torch.cat( ( image_feature, image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.dtype), ), dim=-1, ) image_feature = image_feature.flatten(1, 2).transpose(0, 1) image_feature = torch.cat((base_image_feature, image_feature), dim=0) else: image_feature = image_feature[0] if image_newline is not None: image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0) new_image_features.append(image_feature) feature_lens.append(image_feature.size(0)) image_features = torch.cat(new_image_features, dim=0) feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device) return image_features, feature_lens def get_image_features( self, pixel_values: torch.FloatTensor, image_sizes: torch.Tensor, vision_feature_layer: int, vision_feature_select_strategy: str, ): """ Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_patches, channels, height, width)`) The tensors corresponding to the input images. image_sizes (`torch.Tensor` of shape `(num_images, 2)`) Actual image size of each images (H, W). vision_feature_layer (`int`): The index of the layer to select the vision feature. vision_feature_select_strategy (`str`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"` Returns: image_features (List[`torch.Tensor`]): List of image feature tensor, each contains all the visual feature of all patches and are of shape `(num_patches, image_length, embed_dim)`). """ # ! infer image_num_patches from image_sizes image_num_patches = [ image_size_to_num_patches( image_size=imsize, grid_pinpoints=self.config.image_grid_pinpoints, patch_size=self.config.vision_config.image_size, ) for imsize in image_sizes ] if pixel_values.dim() == 5: # stacked if input is (batch_size, num_patches, num_channels, height, width) _pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)] pixel_values = torch.cat(_pixel_values_list, dim=0) elif pixel_values.dim() != 4: # otherwise has to be stacked from list of (num_patches, num_channels, height, width) raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions") image_features = self.vision_tower(pixel_values, output_hidden_states=True) selected_image_feature = image_features.hidden_states[vision_feature_layer] if vision_feature_select_strategy == "default": # selected_image_feature = selected_image_feature[:, 1:] # elif vision_feature_select_strategy == "full": selected_image_feature = selected_image_feature image_features, vq_loss = self.multi_modal_projector(selected_image_feature) image_features = torch.split(image_features, image_num_patches, dim=0) return image_features, vq_loss @add_start_docstrings_to_model_forward(LLAVA_NEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=LlavaNextCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, image_sizes: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[int] = None, vision_feature_select_strategy: Optional[str] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, ) -> Union[Tuple, LlavaNextCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, LlavaNextForConditionalGeneration >>> model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") >>> prompt = "[INST] \nWhat is shown in this image? [/INST]" >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, text=prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_length=30) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)" ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layer = ( vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer ) vision_feature_select_strategy = ( vision_feature_select_strategy if vision_feature_select_strategy is not None else self.config.vision_feature_select_strategy ) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if pixel_values is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" ) legacy_processing = False if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) # if the number of image tokens is more than image embeddings seq length, then prob we expanded it in processing # not very reliable, but we don't expect one to actually pass 500+ images for one prompt # In case we're in decoding stage, legacy behavior is checked by presence of pixel values even if use_cache=True legacy_processing = ( (input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length ) or (input_ids.shape[-1] == 1 and pixel_values is not None) image_features = None if pixel_values is not None and pixel_values.size(0) > 0: image_features, vq_loss = self.get_image_features( pixel_values, image_sizes, vision_feature_layer=vision_feature_layer, vision_feature_select_strategy=vision_feature_select_strategy, ) # NOTE we only support multimodal_patch_merge_type == "spatial_unpad" image_features, feature_lens = self.pack_image_features( image_features, image_sizes, vision_feature_select_strategy=vision_feature_select_strategy, image_newline=self.image_newline, ) if legacy_processing: logger.warning_once( "Expanding inputs for image tokens in LLaVa-NeXT should be done in processing. " "Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly " "with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. " "Using processors without these attributes in the config is deprecated and will throw an error in v4.47." ) if input_ids.shape[1] != 1: inputs_embeds = inputs_embeds.to(image_features.dtype) inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features( image_features, feature_lens, inputs_embeds, input_ids, attention_mask, position_ids, labels=labels, ) cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device) else: # Retrieve the first layer to inspect the logits and mask out the hidden states # that are set to 0 first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) # Get the target length target_length = input_ids.shape[1] past_length = first_layer_past_key_value.shape[-1] extended_attention_mask = torch.ones( (attention_mask.shape[0], past_length), dtype=attention_mask.dtype, device=attention_mask.device, ) # Filter out only the tokens that can be un-attended, this can happen # if one uses Llava + Fused modules where the cache on the # first iteration is already big enough, or if one passes custom cache valid_indices = non_attended_tokens < extended_attention_mask.size(-1) new_batch_index = batch_index[valid_indices] new_non_attended_tokens = non_attended_tokens[valid_indices] # Zero-out the places where we don't need to attend extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[-target_length:] # TODO: @raushan retain only the new behavior after v4.47 elif image_features is not None: n_image_tokens = (input_ids == self.config.image_token_index).sum().item() n_image_features = image_features.shape[0] if n_image_tokens != n_image_features: raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" ) special_image_mask = ( (input_ids == self.config.image_token_index) .unsqueeze(-1) .expand_as(inputs_embeds) .to(inputs_embeds.device) ) image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, num_logits_to_keep=num_logits_to_keep, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: # we use the input attention mask to shift the logits and labels, because it is 2D. # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) print("This is original loss",loss) #vq_loss = vq_loss.to(loss.device) loss = loss if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return LlavaNextCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values is not None else None, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, image_sizes=None, attention_mask=None, cache_position=None, num_logits_to_keep=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = self.language_model.prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, num_logits_to_keep=num_logits_to_keep, **kwargs, ) # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model if cache_position[0] == 0: model_inputs["pixel_values"] = pixel_values model_inputs["image_sizes"] = image_sizes return model_inputs