asahi417 commited on
Commit
25acf14
·
1 Parent(s): 27bcb03

commit files to HF hub

Browse files
README.md CHANGED
@@ -33,27 +33,27 @@ model-index:
33
  metrics:
34
  - name: BLEU4 (Question Generation)
35
  type: bleu4_question_generation
36
- value: 0.0
37
  - name: ROUGE-L (Question Generation)
38
  type: rouge_l_question_generation
39
- value: 0.48
40
  - name: METEOR (Question Generation)
41
  type: meteor_question_generation
42
- value: 0.3
43
  - name: BERTScore (Question Generation)
44
  type: bertscore_question_generation
45
- value: 54.63
46
  - name: MoverScore (Question Generation)
47
  type: moverscore_question_generation
48
- value: 46.03
49
  ---
50
 
51
  # Model Card of `vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qg`
52
- This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-es-60000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-60000) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
55
  ### Overview
56
- - **Language model:** [vocabtrimmer/mt5-small-trimmed-es-60000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-60000)
57
  - **Language:** es
58
  - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default)
59
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
@@ -89,14 +89,14 @@ output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la In
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
- | BERTScore | 54.63 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
93
- | Bleu_1 | 0.48 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
94
- | Bleu_2 | 0 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
95
- | Bleu_3 | 0 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
96
- | Bleu_4 | 0 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
97
- | METEOR | 0.3 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
98
- | MoverScore | 46.03 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
99
- | ROUGE_L | 0.48 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
100
 
101
 
102
 
@@ -108,12 +108,12 @@ The following hyperparameters were used during fine-tuning:
108
  - input_types: paragraph_answer
109
  - output_types: question
110
  - prefix_types: None
111
- - model: vocabtrimmer/mt5-small-trimmed-es-60000
112
  - max_length: 512
113
  - max_length_output: 32
114
- - epoch: 19
115
  - batch: 16
116
- - lr: 0.0005
117
  - fp16: False
118
  - random_seed: 1
119
  - gradient_accumulation_steps: 4
 
33
  metrics:
34
  - name: BLEU4 (Question Generation)
35
  type: bleu4_question_generation
36
+ value: 9.79
37
  - name: ROUGE-L (Question Generation)
38
  type: rouge_l_question_generation
39
+ value: 24.63
40
  - name: METEOR (Question Generation)
41
  type: meteor_question_generation
42
+ value: 22.64
43
  - name: BERTScore (Question Generation)
44
  type: bertscore_question_generation
45
+ value: 84.4
46
  - name: MoverScore (Question Generation)
47
  type: moverscore_question_generation
48
+ value: 59.16
49
  ---
50
 
51
  # Model Card of `vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qg`
52
+ This model is fine-tuned version of [ckpts/mt5-small-trimmed-es-60000](https://huggingface.co/ckpts/mt5-small-trimmed-es-60000) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
55
  ### Overview
56
+ - **Language model:** [ckpts/mt5-small-trimmed-es-60000](https://huggingface.co/ckpts/mt5-small-trimmed-es-60000)
57
  - **Language:** es
58
  - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default)
59
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
 
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
+ | BERTScore | 84.4 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
93
+ | Bleu_1 | 26.37 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
94
+ | Bleu_2 | 18.03 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
95
+ | Bleu_3 | 13.1 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
96
+ | Bleu_4 | 9.79 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
97
+ | METEOR | 22.64 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
98
+ | MoverScore | 59.16 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
99
+ | ROUGE_L | 24.63 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
100
 
101
 
102
 
 
108
  - input_types: paragraph_answer
109
  - output_types: question
110
  - prefix_types: None
111
+ - model: ckpts/mt5-small-trimmed-es-60000
112
  - max_length: 512
113
  - max_length_output: 32
114
+ - epoch: 13
115
  - batch: 16
116
+ - lr: 0.001
117
  - fp16: False
118
  - random_seed: 1
119
  - gradient_accumulation_steps: 4
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_esquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.005062295838520224, "Bleu_2": 7.018562334906737e-12, "Bleu_3": 8.198677358044067e-15, "Bleu_4": 2.9174613957367305e-16}, "test": {"Bleu_1": 0.004771875671817127, "Bleu_2": 6.8698509302877965e-12, "Bleu_3": 8.13689220979456e-15, "Bleu_4": 2.919479695553252e-16}}
 
1
+ {"validation": {"Bleu_1": 0.2554377527598623, "Bleu_2": 0.17237832980640722, "Bleu_3": 0.12436667953630834, "Bleu_4": 0.09255044167384886}, "test": {"Bleu_1": 0.26286916208790984, "Bleu_2": 0.17984162114940028, "Bleu_3": 0.13071688721787858, "Bleu_4": 0.09767878303878488}}
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.005370648033099662, "Bleu_2": 7.644387822553005e-12, "Bleu_3": 9.009082559787587e-15, "Bleu_4": 3.2202868038390934e-16, "METEOR": 0.0032039785468518326, "ROUGE_L": 0.0052877730360309716, "BERTScore": 0.5452270943339385, "MoverScore": 0.46003995041571005}, "test": {"Bleu_1": 0.004838971590995159, "Bleu_2": 6.96004428083701e-12, "Bleu_3": 8.241146396516722e-15, "Bleu_4": 2.95639977650681e-16, "METEOR": 0.003045434707024445, "ROUGE_L": 0.004843559212404214, "BERTScore": 0.5462537683069882, "MoverScore": 0.4602740629844674}}
 
1
+ {"validation": {"Bleu_1": 0.26697593990554214, "Bleu_2": 0.18154025610125302, "Bleu_3": 0.1316568284777279, "Bleu_4": 0.09832707262376704, "METEOR": 0.21939909127977714, "ROUGE_L": 0.24474327316599234, "BERTScore": 0.836559349684048, "MoverScore": 0.5824001526468208}, "test": {"Bleu_1": 0.26365356572460014, "Bleu_2": 0.18033041935338742, "Bleu_3": 0.13101550910348272, "Bleu_4": 0.0978892101003055, "METEOR": 0.22636782562891164, "ROUGE_L": 0.24629345745612669, "BERTScore": 0.8440404895889356, "MoverScore": 0.5916298140098185}}
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_esquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_esquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff