asahi417 commited on
Commit
e2fc444
·
1 Parent(s): e3d56b3

model update

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: cc-by-4.0
4
+ metrics:
5
+ - bleu4
6
+ - meteor
7
+ - rouge-l
8
+ - bertscore
9
+ - moverscore
10
+ language: fr
11
+ datasets:
12
+ - lmqg/qg_frquad
13
+ pipeline_tag: text2text-generation
14
+ tags:
15
+ - question generation
16
+ widget:
17
+ - text: "Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc."
18
+ example_title: "Question Generation Example 1"
19
+ - text: "Ce black dog peut être lié à des évènements traumatisants issus du monde extérieur, tels que son renvoi de l'Amirauté après la catastrophe des Dardanelles, lors de la <hl> Grande Guerre <hl> de 14-18, ou son rejet par l'électorat en juillet 1945."
20
+ example_title: "Question Generation Example 2"
21
+ - text: "contre <hl> Normie Smith <hl> et 15 000 dollars le 28 novembre 1938."
22
+ example_title: "Question Generation Example 3"
23
+ model-index:
24
+ - name: vocabtrimmer/mt5-small-trimmed-fr-frquad-qg
25
+ results:
26
+ - task:
27
+ name: Text2text Generation
28
+ type: text2text-generation
29
+ dataset:
30
+ name: lmqg/qg_frquad
31
+ type: default
32
+ args: default
33
+ metrics:
34
+ - name: BLEU4 (Question Generation)
35
+ type: bleu4_question_generation
36
+ value: 7.18
37
+ - name: ROUGE-L (Question Generation)
38
+ type: rouge_l_question_generation
39
+ value: 26.74
40
+ - name: METEOR (Question Generation)
41
+ type: meteor_question_generation
42
+ value: 16.12
43
+ - name: BERTScore (Question Generation)
44
+ type: bertscore_question_generation
45
+ value: 79.16
46
+ - name: MoverScore (Question Generation)
47
+ type: moverscore_question_generation
48
+ value: 55.31
49
+ ---
50
+
51
+ # Model Card of `vocabtrimmer/mt5-small-trimmed-fr-frquad-qg`
52
+ This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-fr](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr) for question generation task on the [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
+
54
+
55
+ ### Overview
56
+ - **Language model:** [vocabtrimmer/mt5-small-trimmed-fr](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr)
57
+ - **Language:** fr
58
+ - **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default)
59
+ - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
60
+ - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
61
+ - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
62
+
63
+ ### Usage
64
+ - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
65
+ ```python
66
+ from lmqg import TransformersQG
67
+
68
+ # initialize model
69
+ model = TransformersQG(language="fr", model="vocabtrimmer/mt5-small-trimmed-fr-frquad-qg")
70
+
71
+ # model prediction
72
+ questions = model.generate_q(list_context="Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.", list_answer="le Suprême Berger")
73
+
74
+ ```
75
+
76
+ - With `transformers`
77
+ ```python
78
+ from transformers import pipeline
79
+
80
+ pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-fr-frquad-qg")
81
+ output = pipe("Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")
82
+
83
+ ```
84
+
85
+ ## Evaluation
86
+
87
+
88
+ - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-frquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_frquad.default.json)
89
+
90
+ | | Score | Type | Dataset |
91
+ |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
+ | BERTScore | 79.16 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
93
+ | Bleu_1 | 27.02 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
94
+ | Bleu_2 | 15.5 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
95
+ | Bleu_3 | 10.32 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
96
+ | Bleu_4 | 7.18 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
97
+ | METEOR | 16.12 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
98
+ | MoverScore | 55.31 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
99
+ | ROUGE_L | 26.74 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
100
+
101
+
102
+
103
+ ## Training hyperparameters
104
+
105
+ The following hyperparameters were used during fine-tuning:
106
+ - dataset_path: lmqg/qg_frquad
107
+ - dataset_name: default
108
+ - input_types: paragraph_answer
109
+ - output_types: question
110
+ - prefix_types: None
111
+ - model: vocabtrimmer/mt5-small-trimmed-fr
112
+ - max_length: 512
113
+ - max_length_output: 32
114
+ - epoch: 17
115
+ - batch: 32
116
+ - lr: 0.001
117
+ - fp16: False
118
+ - random_seed: 1
119
+ - gradient_accumulation_steps: 2
120
+ - label_smoothing: 0.15
121
+
122
+ The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-frquad-qg/raw/main/trainer_config.json).
123
+
124
+ ## Citation
125
+ ```
126
+ @inproceedings{ushio-etal-2022-generative,
127
+ title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
128
+ author = "Ushio, Asahi and
129
+ Alva-Manchego, Fernando and
130
+ Camacho-Collados, Jose",
131
+ booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
132
+ month = dec,
133
+ year = "2022",
134
+ address = "Abu Dhabi, U.A.E.",
135
+ publisher = "Association for Computational Linguistics",
136
+ }
137
+
138
+ ```
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<hl>": 131086
3
+ }
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmqg_output/trimmed_qg/mt5-small-trimmed-fr-frquad-qg/model_sawyyx/epoch_16",
3
+ "add_prefix": false,
4
+ "architectures": [
5
+ "MT5ForConditionalGeneration"
6
+ ],
7
+ "d_ff": 1024,
8
+ "d_kv": 64,
9
+ "d_model": 512,
10
+ "decoder_start_token_id": 0,
11
+ "dense_act_fn": "gelu_new",
12
+ "dropout_rate": 0.1,
13
+ "eos_token_id": 1,
14
+ "feed_forward_proj": "gated-gelu",
15
+ "initializer_factor": 1.0,
16
+ "is_encoder_decoder": true,
17
+ "is_gated_act": true,
18
+ "layer_norm_epsilon": 1e-06,
19
+ "model_type": "mt5",
20
+ "num_decoder_layers": 8,
21
+ "num_heads": 6,
22
+ "num_layers": 8,
23
+ "pad_token_id": 0,
24
+ "relative_attention_max_distance": 128,
25
+ "relative_attention_num_buckets": 32,
26
+ "tie_word_embeddings": false,
27
+ "tokenizer_class": "T5Tokenizer",
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.26.1",
30
+ "use_cache": true,
31
+ "vocab_size": 131087,
32
+ "vocabtrimmer": {
33
+ "mining_config": {
34
+ "dataset": "vocabtrimmer/mc4_validation",
35
+ "dataset_column": "text",
36
+ "dataset_name": "fr",
37
+ "dataset_split": "validation",
38
+ "language": "fr",
39
+ "min_frequency": 2,
40
+ "target_vocab_size": null
41
+ },
42
+ "stats": {
43
+ "compression_rate_embedding": 52.41091990788127,
44
+ "compression_rate_full": 59.3963834003303,
45
+ "parameter_size_embedding/raw": 256114688,
46
+ "parameter_size_embedding/trimmed": 134232064,
47
+ "parameter_size_full/raw": 300176768,
48
+ "parameter_size_full/trimmed": 178294144,
49
+ "vocab_size/raw": 250112,
50
+ "vocab_size/trimmed": 131086
51
+ }
52
+ }
53
+ }
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_frquad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.27145209835878614, "Bleu_2": 0.15101670182431126, "Bleu_3": 0.09971811081250759, "Bleu_4": 0.0685410551755629}, "test": {"Bleu_1": 0.2687657726392315, "Bleu_2": 0.1537244361899165, "Bleu_3": 0.1021905337465626, "Bleu_4": 0.07112934126936254}}
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_frquad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.2735239315243894, "Bleu_2": 0.1525336754813663, "Bleu_3": 0.10082662477471249, "Bleu_4": 0.06936756165512115, "METEOR": 0.15204420303619753, "ROUGE_L": 0.2860785379979454, "BERTScore": 0.7798672934807358, "MoverScore": 0.5479412775634349}, "test": {"Bleu_1": 0.27020896966763636, "Bleu_2": 0.15496117722651803, "Bleu_3": 0.10315377276908672, "Bleu_4": 0.07182526517770169, "METEOR": 0.16124498203512042, "ROUGE_L": 0.2673768803626359, "BERTScore": 0.7915598073630657, "MoverScore": 0.5531467220804932}}
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_frquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_frquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "decoder_start_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.26.1"
7
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a78f6b49551d636855ac97428837ec2bd5e9adc9b77e3b5ac0971ee3dbf8086
3
+ size 713246085
special_tokens_map.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<hl>"
4
+ ],
5
+ "eos_token": "</s>",
6
+ "pad_token": "<pad>",
7
+ "unk_token": "<unk>"
8
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef78f86560d809067d12bac6c09f19a462cb3af3f54d2b8acbba26e1433125d6
3
+ size 4309802
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd519893cbee6d2e0c3399ffdd59ae974f13f564d9d34b304b4bc2264ca32deb
3
+ size 8536913
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": null,
3
+ "eos_token": "</s>",
4
+ "extra_ids": 0,
5
+ "model_max_length": 1000000000000000019884624838656,
6
+ "name_or_path": "lmqg_output/trimmed_qg/mt5-small-trimmed-fr-frquad-qg/model_sawyyx/epoch_16",
7
+ "pad_token": "<pad>",
8
+ "sp_model_kwargs": {},
9
+ "special_tokens_map_file": "/home/asahiushio/.cache/huggingface/hub/models--google--mt5-small/snapshots/38f23af8ec210eb6c376d40e9c56bd25a80f195d/special_tokens_map.json",
10
+ "tokenizer_class": "T5Tokenizer",
11
+ "unk_token": "<unk>"
12
+ }
trainer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"dataset_path": "lmqg/qg_frquad", "dataset_name": "default", "input_types": "paragraph_answer", "output_types": "question", "prefix_types": null, "model": "vocabtrimmer/mt5-small-trimmed-fr", "max_length": 512, "max_length_output": 32, "epoch": 17, "batch": 32, "lr": 0.001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 2, "label_smoothing": 0.15}