gemma-3-omni-4b-it / modeling_gemma3_omni.py
voidful's picture
Rename modeling.py to modeling_gemma3_omni.py
4d3adc7 verified
raw
history blame
17.8 kB
# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import List, Optional, Tuple, Union
import torch
import torchaudio
from torch import nn
from transformers import (
AutoModel,
AutoModelForCausalLM,
Cache,
Gemma3Config,
PreTrainedModel,
PretrainedConfig, StaticCache, HybridCache,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.models.gemma3.modeling_gemma3 import (
Gemma3CausalLMOutputWithPast,
Gemma3ForConditionalGeneration,
Gemma3RMSNorm,
)
from transformers.utils import is_torchdynamo_compiling, logging
from .speech_conformer_encoder import ConformerEncoder
logger = logging.get_logger(__name__)
class Gemma3AudioProjectorConfig(PretrainedConfig):
model_type = "gemma3_audio"
def __init__(
self,
hidden_size: int = 1024,
num_hidden_layers: int = 24,
sample_rate: int = 16_000,
n_mels: int = 80,
audio_token_id: int = 0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.sample_rate = sample_rate
self.n_mels = n_mels
self.audio_token_id = audio_token_id
class Gemma3AudioProjector(PreTrainedModel):
"""Conformer-based audio encoder β†’ project to LM hidden-dim."""
config_class = Gemma3AudioProjectorConfig
base_model_prefix = "audio_projector"
def __init__(self, config: Gemma3AudioProjectorConfig):
super().__init__(config)
# encoder_config = config.audio_processor.get("config", None)
encoder_config = {
"activation": "swish",
"activation_checkpointing": {
"interval": 1,
"module": "transformer",
"offload": False
},
"attention_dim": 1024,
"attention_heads": 16,
"batch_norm": False,
"bias_in_glu": True,
"causal": True,
"chunk_size": -1,
"cnn_layer_norm": True,
"conv_activation": "swish",
"conv_glu_type": "swish",
"depthwise_multiplier": 1,
"depthwise_seperable_out_channel": 1024,
"dropout_rate": 0.0,
"encoder_embedding_config": {
"input_size": 80
},
"ext_pw_kernel_size": 1,
"ext_pw_out_channel": 1024,
"input_layer": "nemo_conv",
"input_size": 80,
"kernel_size": 3,
"left_chunk": 18,
"linear_units": 1536,
"nemo_conv_settings": {
"conv_channels": 1024
},
"num_blocks": 24,
"relative_attention_bias_args": {
"t5_bias_max_distance": 500,
"type": "t5"
},
"time_reduction": 8
}
self.encoder = ConformerEncoder(**encoder_config)
self.mel = torchaudio.transforms.MelSpectrogram(
sample_rate=config.sample_rate, n_mels=config.n_mels
)
self.proj = nn.Linear(self.encoder.ATTN_DIM, config.hidden_size, bias=False)
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.post_init()
# ---------- helpers ----------
def wav2mel(self, wav: torch.Tensor) -> torch.Tensor:
return self.mel(wav).clamp(min=1e-5).log().transpose(1, 2)
# ---------- forward ----------
@torch.no_grad()
def forward(self, wav: torch.Tensor) -> torch.Tensor: # (B,T) or (B,1,T)
if wav.dim() == 3:
wav = wav.squeeze(1)
mel = self.wav2mel(wav)
lengths = torch.full(
(mel.size(0),), mel.size(1), dtype=torch.long, device=mel.device
)
hidden = self.encoder(mel, lengths)
hidden = self.proj(hidden)
return self.layer_norm(hidden)
# ──────────────────────────────────────────────────────────────────────────────
# Vision projector (θˆ‡εŽŸη‰ˆδΈ€θ‡΄οΌŒεͺζ”Ή dtype)
# ──────────────────────────────────────────────────────────────────────────────
class Gemma3VisionProjector(nn.Module):
def __init__(self, config: Gemma3Config):
super().__init__()
self.mm_input_projection_weight = nn.Parameter(
torch.zeros(config.vision_config.hidden_size, config.text_config.hidden_size)
)
self.mm_soft_emb_norm = Gemma3RMSNorm(
config.vision_config.hidden_size, eps=config.vision_config.layer_norm_eps
)
self.patches_per_image = config.vision_config.image_size // config.vision_config.patch_size
self.tokens_per_side = int(config.mm_tokens_per_image ** 0.5)
self.kernel_size = self.patches_per_image // self.tokens_per_side
self.avg_pool = nn.AvgPool2d(kernel_size=self.kernel_size, stride=self.kernel_size)
def forward(self, vision_outputs: torch.Tensor):
b, _, seq_len = vision_outputs.shape
x = vision_outputs.transpose(1, 2).reshape(
b, seq_len, self.patches_per_image, self.patches_per_image
)
x = self.avg_pool(x).flatten(2).transpose(1, 2)
x = self.mm_soft_emb_norm(x)
return torch.matmul(x, self.mm_input_projection_weight).type_as(vision_outputs)
# ──────────────────────────────────────────────────────────────────────────────
# Gemma-3 Multimodal wrapper
# ──────────────────────────────────────────────────────────────────────────────
class Gemma3OmniForConditionalGeneration(Gemma3ForConditionalGeneration):
"""Gemma-3 Omni:vision + audio + text causal LM."""
def __init__(self, config: Gemma3Config):
super().__init__(config)
# ---- sub-modules
self.vision_tower = AutoModel.from_config(config=config.vision_config)
self.multi_modal_projector = Gemma3VisionProjector(config)
self.audio_projector = Gemma3AudioProjector(
Gemma3AudioProjectorConfig(hidden_size=config.text_config.hidden_size)
)
self.vocab_size = config.text_config.vocab_size
language_model = AutoModelForCausalLM.from_config(config=config.text_config)
if language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
self.language_model = language_model
self.pad_token_id = (
self.config.pad_token_id if self.config.pad_token_id is not None else -1
)
self.post_init()
# ---------- helper ----------
def get_audio_features(self, audio_values: torch.Tensor) -> torch.Tensor:
return self.audio_projector(audio_values)
def _update_causal_mask(
self,
attention_mask,
token_type_ids,
past_key_values,
cache_position,
input_tensor,
is_training: bool = False,
):
if self.config.text_config._attn_implementation == "flash_attention_2":
return attention_mask
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted
# form and requires no inversion or slicing.
return attention_mask
using_static_cache = isinstance(past_key_values, StaticCache)
min_dtype = torch.finfo(self.dtype).min
inputs_lead_dim, sequence_length = input_tensor.shape[:2]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
elif isinstance(past_key_values, HybridCache):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else cache_position[0] + sequence_length + 1
)
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
return attention_mask
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device
)
# Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
# Apply bidirectional mask on images if token type ids are provided
if token_type_ids is not None and sequence_length != 1:
token_type_mask = token_type_ids.unsqueeze(1) == token_type_ids.unsqueeze(2)
token_type_mask[token_type_ids == 0] = False # if text token do not change anything
token_type_mask = token_type_mask.unsqueeze(1).to(causal_mask.device, dtype=torch.bool)
causal_mask = causal_mask.clone()
causal_mask[:, :, :, :sequence_length] = causal_mask[:, :, :, :sequence_length].masked_fill(
token_type_mask, 0.0
)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
# Then apply padding mask (will mask pad tokens)
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
# ---------- forward ----------
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
audio_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**lm_kwargs,
) -> Union[Tuple, Gemma3CausalLMOutputWithPast]:
# === input validation ===
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("Exactly one of input_ids or inputs_embeds must be provided")
output_attentions = (
output_attentions if output_attentions is not None else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
is_training = token_type_ids is not None and labels is not None
# OOV image token β†’ pad
if input_ids is not None and self.config.image_token_id >= self.vocab_size:
special_image_mask = input_ids == self.config.image_token_id
llm_input_ids = input_ids.clone()
llm_input_ids[special_image_mask] = 0
else:
llm_input_ids = input_ids
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(llm_input_ids)
# cache_position
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
# === merge image ===
if pixel_values is not None:
image_feat = self.get_image_features(pixel_values)
special_image_mask = (
(
inputs_embeds
== self.get_input_embeddings()(
torch.tensor(self.config.image_token_id, device=inputs_embeds.device)
)
)
if input_ids is None
else (
input_ids == self.config.image_token_id
).unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
)
if (
not is_torchdynamo_compiling()
and inputs_embeds[special_image_mask].numel() != image_feat.numel()
):
raise ValueError("#image tokens β‰  #embedding slots")
inputs_embeds = inputs_embeds.masked_scatter(
special_image_mask, image_feat.to(inputs_embeds)
)
# === merge audio ===
if audio_values is not None:
audio_feat = self.get_audio_features(audio_values)
# special_audio_mask = (
# (
# inputs_embeds
# == self.get_input_embeddings()(
# torch.tensor(self.config.audio_token_id, device=inputs_embeds.device)
# )
# )
# if input_ids is None
# else (
# input_ids == self.config.audio_token_id
# ).unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
# )
# if (
# not is_torchdynamo_compiling()
# and inputs_embeds[special_audio_mask].numel() != audio_feat.numel()
# ):
# raise ValueError("#audio tokens β‰  #embedding slots")
# inputs_embeds = inputs_embeds.masked_scatter(
# special_audio_mask, audio_feat.to(inputs_embeds)
# )
print(audio_feat.shape, inputs_embeds.shape)
inputs_embeds = torch.cat([audio_feat, inputs_embeds], dim=1)
# === label masking ===
if labels is not None and self.pad_token_id in labels:
logger.warning_once(
"`labels` contains `pad_token_id`; they will be masked out at loss computation."
)
labels = torch.where(
input_ids == self.pad_token_id, self.config.ignore_index, labels
)
causal_mask = self._update_causal_mask(
attention_mask,
token_type_ids,
past_key_values,
cache_position,
inputs_embeds,
is_training,
)
outputs: CausalLMOutputWithPast = self.language_model(
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**lm_kwargs,
)
# === loss ===
logits = outputs.logits
loss = None
if labels is not None:
logits = logits.float()
shift_logits = logits[..., :-1, :]
shift_labels = labels[..., 1:]
if attention_mask is not None:
shift_attention_mask = attention_mask[:, -shift_logits.shape[1]:].to(
logits.device
)
shift_logits = shift_logits[shift_attention_mask != 0].contiguous()
shift_labels = shift_labels[shift_attention_mask != 0].contiguous()
loss = nn.CrossEntropyLoss()(
shift_logits.view(-1, self.config.text_config.vocab_size),
shift_labels.view(-1),
)
return Gemma3CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_feat if pixel_values is not None else None,
)
# ──────────────────────────────────────────────────────────────────────────────
# exports
# ──────────────────────────────────────────────────────────────────────────────
__all__ = [
"Gemma3OmniForConditionalGeneration",
]