Create run.py
Browse files
run.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel
|
4 |
+
|
5 |
+
# 检查是否有可用的 GPU
|
6 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
|
8 |
+
# 模型名称
|
9 |
+
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
10 |
+
|
11 |
+
# 加载分词器
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
13 |
+
|
14 |
+
# 再次加载 LoRA 模型
|
15 |
+
base_model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).to(device)
|
16 |
+
lora_model = PeftModel.from_pretrained(base_model, "wangyiqun/qwen25_3b_instruct_lora_vulgarity_finetuned")
|
17 |
+
|
18 |
+
# 推理示例
|
19 |
+
input_text = "Hello"
|
20 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(lora_model.device)
|
21 |
+
output = lora_model.generate(input_ids, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.35)
|
22 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
23 |
+
print(output_text)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
#!pip install gradio
|
29 |
+
import gradio as gr
|
30 |
+
|
31 |
+
# 假设这些变量已经定义
|
32 |
+
# tokenizer, model
|
33 |
+
|
34 |
+
# 对话函数
|
35 |
+
def chatbot(input_text, history):
|
36 |
+
if history is None:
|
37 |
+
history = []
|
38 |
+
# 将当前输入添加到历史记录中
|
39 |
+
history.append({"role": "user", "content": input_text})
|
40 |
+
messages = [
|
41 |
+
{"role": "system", "content": "根据用户友好的打招呼,和用户对骂,注意上下文语义连贯"}
|
42 |
+
] + history
|
43 |
+
text = tokenizer.apply_chat_template(
|
44 |
+
messages,
|
45 |
+
tokenize=False,
|
46 |
+
add_generation_prompt=True
|
47 |
+
)
|
48 |
+
global lora_model
|
49 |
+
model = lora_model
|
50 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
51 |
+
|
52 |
+
generated_ids = model.generate(
|
53 |
+
**model_inputs,
|
54 |
+
max_new_tokens=512
|
55 |
+
)
|
56 |
+
generated_ids = [
|
57 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
58 |
+
]
|
59 |
+
|
60 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
61 |
+
# 将模型回复添加到历史记录中
|
62 |
+
history.append({"role": "assistant", "content": response})
|
63 |
+
# 转换为 Gradio Chatbot 所需的格式
|
64 |
+
chat_history = [(msg["content"] if msg["role"] == "user" else None,
|
65 |
+
msg["content"] if msg["role"] == "assistant" else None) for msg in history if
|
66 |
+
msg["role"] in ["user", "assistant"]]
|
67 |
+
return chat_history, history
|
68 |
+
|
69 |
+
|
70 |
+
# Gradio 界面
|
71 |
+
iface = gr.Interface(
|
72 |
+
fn=chatbot,
|
73 |
+
inputs=[gr.Textbox(label="输入你的问题"), gr.State()],
|
74 |
+
outputs=[gr.Chatbot(label="聊天历史"), gr.State()],
|
75 |
+
title="Qwen2.5-finetune-骂人专家",
|
76 |
+
description="Qwen2.5-finetune-骂人专家"
|
77 |
+
)
|
78 |
+
|
79 |
+
iface.launch(share=True, inbrowser=False, debug=True)
|