wdika commited on
Commit
1641e49
·
verified ·
1 Parent(s): 22f00eb

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -0
README.md ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - StanfordKnees2019
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - LPDNet
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_LPDNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ Learned Primal Dual Network (LPDNet) for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf).
38
+
39
+
40
+ ### Automatically instantiate the model
41
+
42
+ ```base
43
+ pretrained: true
44
+ checkpoint: https://huggingface.co/wdika/REC_LPDNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_LPDNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic
45
+ mode: test
46
+ ```
47
+
48
+ ### Usage
49
+
50
+ You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information.
51
+
52
+
53
+ ## Model Architecture
54
+ ```base
55
+ model:
56
+ model_name: LPDNet
57
+ num_primal: 5
58
+ num_dual: 5
59
+ num_iter: 5
60
+ primal_model_architecture: UNET
61
+ primal_in_channels: 2
62
+ primal_out_channels: 2
63
+ primal_unet_num_filters: 16
64
+ primal_unet_num_pool_layers: 2
65
+ primal_unet_dropout_probability: 0.0
66
+ primal_unet_padding_size: 11
67
+ primal_unet_normalize: true
68
+ dual_model_architecture: UNET
69
+ dual_in_channels: 2
70
+ dual_out_channels: 2
71
+ dual_unet_num_filters: 16
72
+ dual_unet_num_pool_layers: 2
73
+ dual_unet_dropout_probability: 0.0
74
+ dual_unet_padding_size: 11
75
+ dual_unet_normalize: true
76
+ dimensionality: 2
77
+ reconstruction_loss:
78
+ wasserstein: 1.0
79
+ ```
80
+
81
+ ## Training
82
+ ```base
83
+ optim:
84
+ name: adamw
85
+ lr: 1e-4
86
+ betas:
87
+ - 0.9
88
+ - 0.999
89
+ weight_decay: 0.0
90
+ sched:
91
+ name: InverseSquareRootAnnealing
92
+ min_lr: 0.0
93
+ last_epoch: -1
94
+ warmup_ratio: 0.1
95
+
96
+ trainer:
97
+ strategy: ddp_find_unused_parameters_false
98
+ accelerator: gpu
99
+ devices: 1
100
+ num_nodes: 1
101
+ max_epochs: 20
102
+ precision: 16-mixed
103
+ enable_checkpointing: false
104
+ logger: false
105
+ log_every_n_steps: 50
106
+ check_val_every_n_epoch: -1
107
+ max_steps: -1
108
+ ```
109
+
110
+ ## Performance
111
+
112
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files.
113
+
114
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
115
+
116
+ Results
117
+ -------
118
+
119
+ Evaluation against SENSE targets
120
+ --------------------------------
121
+ 12x: MSE = 0.0016 +/- 0.005712 NMSE = 0.05706 +/- 0.09372 PSNR = 29.79 +/- 6.276 SSIM = 0.7366 +/- 0.297
122
+
123
+
124
+
125
+ ## Limitations
126
+
127
+ This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard.
128
+
129
+
130
+ ## References
131
+
132
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
133
+
134
+ [2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1