File size: 2,142 Bytes
70d438f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
library_name: transformers
license: apache-2.0
base_model: wu-kiot/whisper-small-am-fleurs
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: whisper-small-fc-am
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: am
split: None
args: am
metrics:
- name: Wer
type: wer
value: 62.73062730627307
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-fc-am
This model is a fine-tuned version of [wu-kiot/whisper-small-am-fleurs](https://huggingface.co/wu-kiot/whisper-small-am-fleurs) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3756
- Wer: 62.7306
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2866 | 1.0 | 44 | 0.2855 | 63.9958 |
| 0.1582 | 2.0 | 88 | 0.2958 | 64.1539 |
| 0.0885 | 3.0 | 132 | 0.3311 | 67.4222 |
| 0.0793 | 4.0 | 176 | 0.3700 | 66.4207 |
| 0.0375 | 5.0 | 220 | 0.3756 | 62.7306 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|