--- library_name: transformers license: apache-2.0 base_model: wwwtwwwt/whisper-small-transcription tags: - generated_from_trainer datasets: - covost2 metrics: - bleu model-index: - name: whisper-tiny-translation results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: covost2 type: covost2 config: zh-CN_en split: None args: zh-CN_en metrics: - name: Bleu type: bleu value: 8.913626875649962 --- # whisper-tiny-translation This model is a fine-tuned version of [wwwtwwwt/whisper-small-transcription](https://huggingface.co/wwwtwwwt/whisper-small-transcription) on the covost2 dataset. It achieves the following results on the evaluation set: - Loss: 2.1289 - Bleu: 8.9136 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.4897 | 1.3407 | 1000 | 2.1289 | 8.9136 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0