xjw1001002 commited on
Commit
394af56
·
verified ·
1 Parent(s): 0396fc7

Upload 13 files

Browse files
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ library_name: peft
4
+ tags:
5
+ - llama-factory
6
+ - lora
7
+ - generated_from_trainer
8
+ base_model: Qwen/Qwen-7B-Chat
9
+ model-index:
10
+ - name: brand_model
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # brand_model
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) on the brand_train dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0127
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 32
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - num_epochs: 1.0
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - PEFT 0.7.1
58
+ - Transformers 4.36.2
59
+ - Pytorch 2.1.2+cu118
60
+ - Datasets 2.15.0
61
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen-7B-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "c_attn"
23
+ ],
24
+ "task_type": "CAUSAL_LM"
25
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4287c2802fef56fee6fd79795006f5a6d6caacb21b90d599369048fc43c8eb83
3
+ size 16785504
all_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.012725877575576305,
4
+ "eval_runtime": 1718.6779,
5
+ "eval_samples_per_second": 22.862,
6
+ "eval_steps_per_second": 2.858,
7
+ "train_loss": 0.04709457870986094,
8
+ "train_runtime": 3992.6154,
9
+ "train_samples_per_second": 6.561,
10
+ "train_steps_per_second": 0.205
11
+ }
eval_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.012725877575576305,
4
+ "eval_runtime": 1718.6779,
5
+ "eval_samples_per_second": 22.862,
6
+ "eval_steps_per_second": 2.858
7
+ }
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|im_end|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "eos_token": "<|endoftext|>",
12
+ "pad_token": "<|endoftext|>"
13
+ }
tokenization_qwen.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import Collection, Dict, List, Set, Tuple, Union
13
+
14
+ import tiktoken
15
+ from transformers import PreTrainedTokenizer, AddedToken
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
+
22
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
+ ENDOFTEXT = "<|endoftext|>"
24
+ IMSTART = "<|im_start|>"
25
+ IMEND = "<|im_end|>"
26
+ # as the default behavior is changed to allow special tokens in
27
+ # regular texts, the surface forms of special tokens need to be
28
+ # as different as possible to minimize the impact
29
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ # changed to use actual index to avoid misconfiguration with vocabulary expansion
31
+ SPECIAL_START_ID = 151643
32
+ SPECIAL_TOKENS = tuple(
33
+ enumerate(
34
+ (
35
+ (
36
+ ENDOFTEXT,
37
+ IMSTART,
38
+ IMEND,
39
+ )
40
+ + EXTRAS
41
+ ),
42
+ start=SPECIAL_START_ID,
43
+ )
44
+ )
45
+ SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
46
+
47
+
48
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
49
+ with open(tiktoken_bpe_file, "rb") as f:
50
+ contents = f.read()
51
+ return {
52
+ base64.b64decode(token): int(rank)
53
+ for token, rank in (line.split() for line in contents.splitlines() if line)
54
+ }
55
+
56
+
57
+ class QWenTokenizer(PreTrainedTokenizer):
58
+ """QWen tokenizer."""
59
+
60
+ vocab_files_names = VOCAB_FILES_NAMES
61
+
62
+ def __init__(
63
+ self,
64
+ vocab_file,
65
+ errors="replace",
66
+ extra_vocab_file=None,
67
+ **kwargs,
68
+ ):
69
+ super().__init__(**kwargs)
70
+
71
+ # how to handle errors in decoding UTF-8 byte sequences
72
+ # use ignore if you are in streaming inference
73
+ self.errors = errors
74
+
75
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
76
+ self.special_tokens = {
77
+ token: index
78
+ for index, token in SPECIAL_TOKENS
79
+ }
80
+
81
+ # try load extra vocab from file
82
+ if extra_vocab_file is not None:
83
+ used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
84
+ extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
85
+ for token, index in extra_mergeable_ranks.items():
86
+ if token in self.mergeable_ranks:
87
+ logger.info(f"extra token {token} exists, skipping")
88
+ continue
89
+ if index in used_ids:
90
+ logger.info(f'the index {index} for extra token {token} exists, skipping')
91
+ continue
92
+ self.mergeable_ranks[token] = index
93
+ # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
94
+
95
+ enc = tiktoken.Encoding(
96
+ "Qwen",
97
+ pat_str=PAT_STR,
98
+ mergeable_ranks=self.mergeable_ranks,
99
+ special_tokens=self.special_tokens,
100
+ )
101
+ assert (
102
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
103
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
104
+
105
+ self.decoder = {
106
+ v: k for k, v in self.mergeable_ranks.items()
107
+ } # type: dict[int, bytes|str]
108
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
109
+
110
+ self.tokenizer = enc # type: tiktoken.Encoding
111
+
112
+ self.eod_id = self.tokenizer.eot_token
113
+ self.im_start_id = self.special_tokens[IMSTART]
114
+ self.im_end_id = self.special_tokens[IMEND]
115
+
116
+ def __getstate__(self):
117
+ # for pickle lovers
118
+ state = self.__dict__.copy()
119
+ del state["tokenizer"]
120
+ return state
121
+
122
+ def __setstate__(self, state):
123
+ # tokenizer is not python native; don't pass it; rebuild it
124
+ self.__dict__.update(state)
125
+ enc = tiktoken.Encoding(
126
+ "Qwen",
127
+ pat_str=PAT_STR,
128
+ mergeable_ranks=self.mergeable_ranks,
129
+ special_tokens=self.special_tokens,
130
+ )
131
+ self.tokenizer = enc
132
+
133
+ def __len__(self) -> int:
134
+ return self.tokenizer.n_vocab
135
+
136
+ def get_vocab(self) -> Dict[bytes, int]:
137
+ return self.mergeable_ranks
138
+
139
+ def convert_tokens_to_ids(
140
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
141
+ ) -> List[int]:
142
+ ids = []
143
+ if isinstance(tokens, (str, bytes)):
144
+ if tokens in self.special_tokens:
145
+ return self.special_tokens[tokens]
146
+ else:
147
+ return self.mergeable_ranks.get(tokens)
148
+ for token in tokens:
149
+ if token in self.special_tokens:
150
+ ids.append(self.special_tokens[token])
151
+ else:
152
+ ids.append(self.mergeable_ranks.get(token))
153
+ return ids
154
+
155
+ def _add_tokens(
156
+ self,
157
+ new_tokens: Union[List[str], List[AddedToken]],
158
+ special_tokens: bool = False,
159
+ ) -> int:
160
+ if not special_tokens and new_tokens:
161
+ raise ValueError("Adding regular tokens is not supported")
162
+ for token in new_tokens:
163
+ surface_form = token.content if isinstance(token, AddedToken) else token
164
+ if surface_form not in SPECIAL_TOKENS_SET:
165
+ raise ValueError("Adding unknown special tokens is not supported")
166
+ return 0
167
+
168
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
169
+ """
170
+ Save only the vocabulary of the tokenizer (vocabulary).
171
+
172
+ Returns:
173
+ `Tuple(str)`: Paths to the files saved.
174
+ """
175
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
176
+ with open(file_path, "w", encoding="utf8") as w:
177
+ for k, v in self.mergeable_ranks.items():
178
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
179
+ w.write(line)
180
+ return (file_path,)
181
+
182
+ def tokenize(
183
+ self,
184
+ text: str,
185
+ allowed_special: Union[Set, str] = "all",
186
+ disallowed_special: Union[Collection, str] = (),
187
+ **kwargs,
188
+ ) -> List[Union[bytes, str]]:
189
+ """
190
+ Converts a string in a sequence of tokens.
191
+
192
+ Args:
193
+ text (`str`):
194
+ The sequence to be encoded.
195
+ allowed_special (`Literal["all"]` or `set`):
196
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
197
+ Default to "all".
198
+ disallowed_special (`Literal["all"]` or `Collection`):
199
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
200
+ Default to an empty tuple.
201
+
202
+ kwargs (additional keyword arguments, *optional*):
203
+ Will be passed to the underlying model specific encode method.
204
+
205
+ Returns:
206
+ `List[bytes|str]`: The list of tokens.
207
+ """
208
+ tokens = []
209
+ text = unicodedata.normalize("NFC", text)
210
+
211
+ # this implementation takes a detour: text -> token id -> token surface forms
212
+ for t in self.tokenizer.encode(
213
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
214
+ ):
215
+ tokens.append(self.decoder[t])
216
+ return tokens
217
+
218
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
219
+ """
220
+ Converts a sequence of tokens in a single string.
221
+ """
222
+ text = ""
223
+ temp = b""
224
+ for t in tokens:
225
+ if isinstance(t, str):
226
+ if temp:
227
+ text += temp.decode("utf-8", errors=self.errors)
228
+ temp = b""
229
+ text += t
230
+ elif isinstance(t, bytes):
231
+ temp += t
232
+ else:
233
+ raise TypeError("token should only be of type types or str")
234
+ if temp:
235
+ text += temp.decode("utf-8", errors=self.errors)
236
+ return text
237
+
238
+ @property
239
+ def vocab_size(self):
240
+ return self.tokenizer.n_vocab
241
+
242
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
243
+ """Converts an id to a token, special tokens included"""
244
+ if index in self.decoder:
245
+ return self.decoder[index]
246
+ raise ValueError("unknown ids")
247
+
248
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
249
+ """Converts a token to an id using the vocab, special tokens included"""
250
+ if token in self.special_tokens:
251
+ return self.special_tokens[token]
252
+ if token in self.mergeable_ranks:
253
+ return self.mergeable_ranks[token]
254
+ raise ValueError("unknown token")
255
+
256
+ def _tokenize(self, text: str, **kwargs):
257
+ """
258
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
259
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
260
+
261
+ Do NOT take care of added tokens.
262
+ """
263
+ raise NotImplementedError
264
+
265
+ def _decode(
266
+ self,
267
+ token_ids: Union[int, List[int]],
268
+ skip_special_tokens: bool = False,
269
+ errors: str = None,
270
+ **kwargs,
271
+ ) -> str:
272
+ if isinstance(token_ids, int):
273
+ token_ids = [token_ids]
274
+ if skip_special_tokens:
275
+ token_ids = [i for i in token_ids if i < self.eod_id]
276
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
tokenizer_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "additional_special_tokens": [
4
+ "<|im_end|>"
5
+ ],
6
+ "auto_map": {
7
+ "AutoTokenizer": [
8
+ "tokenization_qwen.QWenTokenizer",
9
+ null
10
+ ]
11
+ },
12
+ "clean_up_tokenization_spaces": true,
13
+ "eos_token": "<|endoftext|>",
14
+ "model_max_length": 32768,
15
+ "pad_token": "<|endoftext|>",
16
+ "padding_side": "right",
17
+ "split_special_tokens": false,
18
+ "tokenizer_class": "QWenTokenizer"
19
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 0.04709457870986094,
4
+ "train_runtime": 3992.6154,
5
+ "train_samples_per_second": 6.561,
6
+ "train_steps_per_second": 0.205
7
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 5, "total_steps": 818, "loss": 1.9867, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.999539075477821e-05, "epoch": 0.01, "percentage": 0.61, "elapsed_time": "0:00:20", "remaining_time": "0:55:25"}
2
+ {"current_steps": 10, "total_steps": 818, "loss": 1.5198, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.998156471872415e-05, "epoch": 0.01, "percentage": 1.22, "elapsed_time": "0:00:42", "remaining_time": "0:57:15"}
3
+ {"current_steps": 15, "total_steps": 818, "loss": 0.9883, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.995852699004508e-05, "epoch": 0.02, "percentage": 1.83, "elapsed_time": "0:01:05", "remaining_time": "0:58:11"}
4
+ {"current_steps": 20, "total_steps": 818, "loss": 0.3031, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.992628606366426e-05, "epoch": 0.02, "percentage": 2.44, "elapsed_time": "0:01:27", "remaining_time": "0:57:51"}
5
+ {"current_steps": 25, "total_steps": 818, "loss": 0.0533, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.988485382808856e-05, "epoch": 0.03, "percentage": 3.06, "elapsed_time": "0:01:49", "remaining_time": "0:58:03"}
6
+ {"current_steps": 30, "total_steps": 818, "loss": 0.0318, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.983424556102469e-05, "epoch": 0.04, "percentage": 3.67, "elapsed_time": "0:02:12", "remaining_time": "0:57:53"}
7
+ {"current_steps": 35, "total_steps": 818, "loss": 0.0605, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.97744799237457e-05, "epoch": 0.04, "percentage": 4.28, "elapsed_time": "0:02:34", "remaining_time": "0:57:42"}
8
+ {"current_steps": 40, "total_steps": 818, "loss": 0.0126, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.970557895420984e-05, "epoch": 0.05, "percentage": 4.89, "elapsed_time": "0:02:56", "remaining_time": "0:57:12"}
9
+ {"current_steps": 45, "total_steps": 818, "loss": 0.0017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9627568058934274e-05, "epoch": 0.05, "percentage": 5.5, "elapsed_time": "0:03:16", "remaining_time": "0:56:23"}
10
+ {"current_steps": 50, "total_steps": 818, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.95404760036267e-05, "epoch": 0.06, "percentage": 6.11, "elapsed_time": "0:03:39", "remaining_time": "0:56:06"}
11
+ {"current_steps": 55, "total_steps": 818, "loss": 0.0784, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9444334902578315e-05, "epoch": 0.07, "percentage": 6.72, "elapsed_time": "0:04:00", "remaining_time": "0:55:34"}
12
+ {"current_steps": 60, "total_steps": 818, "loss": 0.043, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9339180206821955e-05, "epoch": 0.07, "percentage": 7.33, "elapsed_time": "0:04:23", "remaining_time": "0:55:29"}
13
+ {"current_steps": 65, "total_steps": 818, "loss": 0.0022, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.922505069105995e-05, "epoch": 0.08, "percentage": 7.95, "elapsed_time": "0:04:45", "remaining_time": "0:55:05"}
14
+ {"current_steps": 70, "total_steps": 818, "loss": 0.0101, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9101988439366295e-05, "epoch": 0.09, "percentage": 8.56, "elapsed_time": "0:05:07", "remaining_time": "0:54:43"}
15
+ {"current_steps": 75, "total_steps": 818, "loss": 0.0471, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.897003882966866e-05, "epoch": 0.09, "percentage": 9.17, "elapsed_time": "0:05:29", "remaining_time": "0:54:19"}
16
+ {"current_steps": 80, "total_steps": 818, "loss": 0.002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8829250517015684e-05, "epoch": 0.1, "percentage": 9.78, "elapsed_time": "0:05:51", "remaining_time": "0:54:04"}
17
+ {"current_steps": 85, "total_steps": 818, "loss": 0.0109, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.867967541563594e-05, "epoch": 0.1, "percentage": 10.39, "elapsed_time": "0:06:12", "remaining_time": "0:53:34"}
18
+ {"current_steps": 90, "total_steps": 818, "loss": 0.0322, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8521368679795154e-05, "epoch": 0.11, "percentage": 11.0, "elapsed_time": "0:06:33", "remaining_time": "0:53:05"}
19
+ {"current_steps": 95, "total_steps": 818, "loss": 0.0156, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.835438868345858e-05, "epoch": 0.12, "percentage": 11.61, "elapsed_time": "0:06:54", "remaining_time": "0:52:31"}
20
+ {"current_steps": 100, "total_steps": 818, "loss": 0.0912, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.817879699876623e-05, "epoch": 0.12, "percentage": 12.22, "elapsed_time": "0:07:16", "remaining_time": "0:52:12"}
21
+ {"current_steps": 105, "total_steps": 818, "loss": 0.027, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7994658373328804e-05, "epoch": 0.13, "percentage": 12.84, "elapsed_time": "0:07:37", "remaining_time": "0:51:47"}
22
+ {"current_steps": 110, "total_steps": 818, "loss": 0.027, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.780204070635266e-05, "epoch": 0.13, "percentage": 13.45, "elapsed_time": "0:08:01", "remaining_time": "0:51:40"}
23
+ {"current_steps": 115, "total_steps": 818, "loss": 0.0206, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.760101502360268e-05, "epoch": 0.14, "percentage": 14.06, "elapsed_time": "0:08:22", "remaining_time": "0:51:14"}
24
+ {"current_steps": 120, "total_steps": 818, "loss": 0.012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.739165545121228e-05, "epoch": 0.15, "percentage": 14.67, "elapsed_time": "0:08:44", "remaining_time": "0:50:50"}
25
+ {"current_steps": 125, "total_steps": 818, "loss": 0.002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.717403918835017e-05, "epoch": 0.15, "percentage": 15.28, "elapsed_time": "0:09:07", "remaining_time": "0:50:37"}
26
+ {"current_steps": 130, "total_steps": 818, "loss": 0.0052, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.694824647875391e-05, "epoch": 0.16, "percentage": 15.89, "elapsed_time": "0:09:35", "remaining_time": "0:50:46"}
27
+ {"current_steps": 135, "total_steps": 818, "loss": 0.0036, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6714360581140935e-05, "epoch": 0.16, "percentage": 16.5, "elapsed_time": "0:10:20", "remaining_time": "0:52:21"}
28
+ {"current_steps": 140, "total_steps": 818, "loss": 0.0386, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.647246773850773e-05, "epoch": 0.17, "percentage": 17.11, "elapsed_time": "0:11:08", "remaining_time": "0:53:56"}
29
+ {"current_steps": 145, "total_steps": 818, "loss": 0.0546, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6222657146328624e-05, "epoch": 0.18, "percentage": 17.73, "elapsed_time": "0:11:58", "remaining_time": "0:55:34"}
30
+ {"current_steps": 150, "total_steps": 818, "loss": 0.0472, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.596502091966588e-05, "epoch": 0.18, "percentage": 18.34, "elapsed_time": "0:12:45", "remaining_time": "0:56:47"}
31
+ {"current_steps": 155, "total_steps": 818, "loss": 0.0779, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5699654059203225e-05, "epoch": 0.19, "percentage": 18.95, "elapsed_time": "0:20:59", "remaining_time": "1:29:47"}
32
+ {"current_steps": 160, "total_steps": 818, "loss": 0.0169, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.542665441621537e-05, "epoch": 0.2, "percentage": 19.56, "elapsed_time": "0:22:48", "remaining_time": "1:33:49"}
33
+ {"current_steps": 165, "total_steps": 818, "loss": 0.0249, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.51461226564863e-05, "epoch": 0.2, "percentage": 20.17, "elapsed_time": "0:23:10", "remaining_time": "1:31:43"}
34
+ {"current_steps": 170, "total_steps": 818, "loss": 0.0132, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.485816222318986e-05, "epoch": 0.21, "percentage": 20.78, "elapsed_time": "0:23:32", "remaining_time": "1:29:43"}
35
+ {"current_steps": 175, "total_steps": 818, "loss": 0.0163, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4562879298746165e-05, "epoch": 0.21, "percentage": 21.39, "elapsed_time": "0:23:51", "remaining_time": "1:27:37"}
36
+ {"current_steps": 180, "total_steps": 818, "loss": 0.0181, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4260382765667875e-05, "epoch": 0.22, "percentage": 22.0, "elapsed_time": "0:24:10", "remaining_time": "1:25:41"}
37
+ {"current_steps": 185, "total_steps": 818, "loss": 0.0421, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.395078416641099e-05, "epoch": 0.23, "percentage": 22.62, "elapsed_time": "0:24:29", "remaining_time": "1:23:49"}
38
+ {"current_steps": 190, "total_steps": 818, "loss": 0.0011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.363419766224464e-05, "epoch": 0.23, "percentage": 23.23, "elapsed_time": "0:24:49", "remaining_time": "1:22:03"}
39
+ {"current_steps": 195, "total_steps": 818, "loss": 0.0062, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3310739991155365e-05, "epoch": 0.24, "percentage": 23.84, "elapsed_time": "0:25:09", "remaining_time": "1:20:22"}
40
+ {"current_steps": 200, "total_steps": 818, "loss": 0.0013, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2980530424801146e-05, "epoch": 0.24, "percentage": 24.45, "elapsed_time": "0:25:30", "remaining_time": "1:18:50"}
41
+ {"current_steps": 205, "total_steps": 818, "loss": 0.0515, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.264369072453126e-05, "epoch": 0.25, "percentage": 25.06, "elapsed_time": "0:25:51", "remaining_time": "1:17:19"}
42
+ {"current_steps": 210, "total_steps": 818, "loss": 0.009, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.230034509648803e-05, "epoch": 0.26, "percentage": 25.67, "elapsed_time": "0:26:12", "remaining_time": "1:15:51"}
43
+ {"current_steps": 215, "total_steps": 818, "loss": 0.0132, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.19506201458071e-05, "epoch": 0.26, "percentage": 26.28, "elapsed_time": "0:26:32", "remaining_time": "1:14:26"}
44
+ {"current_steps": 220, "total_steps": 818, "loss": 0.0092, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.159464482993308e-05, "epoch": 0.27, "percentage": 26.89, "elapsed_time": "0:26:51", "remaining_time": "1:13:01"}
45
+ {"current_steps": 225, "total_steps": 818, "loss": 0.0429, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.123255041106788e-05, "epoch": 0.27, "percentage": 27.51, "elapsed_time": "0:27:12", "remaining_time": "1:11:41"}
46
+ {"current_steps": 230, "total_steps": 818, "loss": 0.0381, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.0864470407769114e-05, "epoch": 0.28, "percentage": 28.12, "elapsed_time": "0:27:31", "remaining_time": "1:10:21"}
47
+ {"current_steps": 235, "total_steps": 818, "loss": 0.062, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.049054054571648e-05, "epoch": 0.29, "percentage": 28.73, "elapsed_time": "0:27:52", "remaining_time": "1:09:08"}
48
+ {"current_steps": 240, "total_steps": 818, "loss": 0.0134, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.011089870766437e-05, "epoch": 0.29, "percentage": 29.34, "elapsed_time": "0:28:11", "remaining_time": "1:07:53"}
49
+ {"current_steps": 245, "total_steps": 818, "loss": 0.0167, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.972568488259905e-05, "epoch": 0.3, "percentage": 29.95, "elapsed_time": "0:28:31", "remaining_time": "1:06:41"}
50
+ {"current_steps": 250, "total_steps": 818, "loss": 0.0143, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.93350411141191e-05, "epoch": 0.31, "percentage": 30.56, "elapsed_time": "0:28:51", "remaining_time": "1:05:32"}
51
+ {"current_steps": 255, "total_steps": 818, "loss": 0.0276, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8939111448058404e-05, "epoch": 0.31, "percentage": 31.17, "elapsed_time": "0:29:09", "remaining_time": "1:04:23"}
52
+ {"current_steps": 260, "total_steps": 818, "loss": 0.0636, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.853804187937066e-05, "epoch": 0.32, "percentage": 31.78, "elapsed_time": "0:29:30", "remaining_time": "1:03:20"}
53
+ {"current_steps": 265, "total_steps": 818, "loss": 0.0279, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.813198029829532e-05, "epoch": 0.32, "percentage": 32.4, "elapsed_time": "0:29:49", "remaining_time": "1:02:13"}
54
+ {"current_steps": 270, "total_steps": 818, "loss": 0.0518, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.772107643582458e-05, "epoch": 0.33, "percentage": 33.01, "elapsed_time": "0:30:10", "remaining_time": "1:01:13"}
55
+ {"current_steps": 275, "total_steps": 818, "loss": 0.0189, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.730548180849161e-05, "epoch": 0.34, "percentage": 33.62, "elapsed_time": "0:30:31", "remaining_time": "1:00:15"}
56
+ {"current_steps": 280, "total_steps": 818, "loss": 0.0099, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.688534966250042e-05, "epoch": 0.34, "percentage": 34.23, "elapsed_time": "0:30:51", "remaining_time": "0:59:17"}
57
+ {"current_steps": 285, "total_steps": 818, "loss": 0.0045, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.646083491721794e-05, "epoch": 0.35, "percentage": 34.84, "elapsed_time": "0:31:10", "remaining_time": "0:58:17"}
58
+ {"current_steps": 290, "total_steps": 818, "loss": 0.003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.603209410804906e-05, "epoch": 0.35, "percentage": 35.45, "elapsed_time": "0:31:29", "remaining_time": "0:57:19"}
59
+ {"current_steps": 295, "total_steps": 818, "loss": 0.0229, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.559928532871587e-05, "epoch": 0.36, "percentage": 36.06, "elapsed_time": "0:31:48", "remaining_time": "0:56:24"}
60
+ {"current_steps": 300, "total_steps": 818, "loss": 0.0148, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.516256817296222e-05, "epoch": 0.37, "percentage": 36.67, "elapsed_time": "0:32:08", "remaining_time": "0:55:29"}
61
+ {"current_steps": 305, "total_steps": 818, "loss": 0.0131, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.472210367570518e-05, "epoch": 0.37, "percentage": 37.29, "elapsed_time": "0:32:28", "remaining_time": "0:54:37"}
62
+ {"current_steps": 310, "total_steps": 818, "loss": 0.0104, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.427805425365509e-05, "epoch": 0.38, "percentage": 37.9, "elapsed_time": "0:32:49", "remaining_time": "0:53:46"}
63
+ {"current_steps": 315, "total_steps": 818, "loss": 0.027, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.383058364542611e-05, "epoch": 0.38, "percentage": 38.51, "elapsed_time": "0:33:08", "remaining_time": "0:52:54"}
64
+ {"current_steps": 320, "total_steps": 818, "loss": 0.0023, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3379856851159267e-05, "epoch": 0.39, "percentage": 39.12, "elapsed_time": "0:33:28", "remaining_time": "0:52:05"}
65
+ {"current_steps": 325, "total_steps": 818, "loss": 0.0019, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.292604007168037e-05, "epoch": 0.4, "percentage": 39.73, "elapsed_time": "0:33:47", "remaining_time": "0:51:14"}
66
+ {"current_steps": 330, "total_steps": 818, "loss": 0.0023, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.246930064721524e-05, "epoch": 0.4, "percentage": 40.34, "elapsed_time": "0:34:07", "remaining_time": "0:50:28"}
67
+ {"current_steps": 335, "total_steps": 818, "loss": 0.0248, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.200980699568463e-05, "epoch": 0.41, "percentage": 40.95, "elapsed_time": "0:34:27", "remaining_time": "0:49:40"}
68
+ {"current_steps": 340, "total_steps": 818, "loss": 0.0134, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.154772855060198e-05, "epoch": 0.42, "percentage": 41.56, "elapsed_time": "0:34:46", "remaining_time": "0:48:53"}
69
+ {"current_steps": 345, "total_steps": 818, "loss": 0.0011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.1083235698596505e-05, "epoch": 0.42, "percentage": 42.18, "elapsed_time": "0:35:04", "remaining_time": "0:48:05"}
70
+ {"current_steps": 350, "total_steps": 818, "loss": 0.0202, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.061649971658488e-05, "epoch": 0.43, "percentage": 42.79, "elapsed_time": "0:35:24", "remaining_time": "0:47:20"}
71
+ {"current_steps": 355, "total_steps": 818, "loss": 0.001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.01476927086147e-05, "epoch": 0.43, "percentage": 43.4, "elapsed_time": "0:35:43", "remaining_time": "0:46:35"}
72
+ {"current_steps": 360, "total_steps": 818, "loss": 0.056, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.967698754240289e-05, "epoch": 0.44, "percentage": 44.01, "elapsed_time": "0:36:03", "remaining_time": "0:45:52"}
73
+ {"current_steps": 365, "total_steps": 818, "loss": 0.0097, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.92045577855925e-05, "epoch": 0.45, "percentage": 44.62, "elapsed_time": "0:36:23", "remaining_time": "0:45:09"}
74
+ {"current_steps": 370, "total_steps": 818, "loss": 0.062, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8730577641751476e-05, "epoch": 0.45, "percentage": 45.23, "elapsed_time": "0:36:42", "remaining_time": "0:44:26"}
75
+ {"current_steps": 375, "total_steps": 818, "loss": 0.0022, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.825522188613686e-05, "epoch": 0.46, "percentage": 45.84, "elapsed_time": "0:37:01", "remaining_time": "0:43:44"}
76
+ {"current_steps": 380, "total_steps": 818, "loss": 0.0012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7778665801248292e-05, "epoch": 0.46, "percentage": 46.45, "elapsed_time": "0:37:20", "remaining_time": "0:43:02"}
77
+ {"current_steps": 385, "total_steps": 818, "loss": 0.0058, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.730108511219433e-05, "epoch": 0.47, "percentage": 47.07, "elapsed_time": "0:37:41", "remaining_time": "0:42:23"}
78
+ {"current_steps": 390, "total_steps": 818, "loss": 0.0053, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6822655921895695e-05, "epoch": 0.48, "percentage": 47.68, "elapsed_time": "0:38:01", "remaining_time": "0:41:43"}
79
+ {"current_steps": 395, "total_steps": 818, "loss": 0.0012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6343554646149154e-05, "epoch": 0.48, "percentage": 48.29, "elapsed_time": "0:38:21", "remaining_time": "0:41:04"}
80
+ {"current_steps": 400, "total_steps": 818, "loss": 0.0206, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.586395794857597e-05, "epoch": 0.49, "percentage": 48.9, "elapsed_time": "0:38:40", "remaining_time": "0:40:24"}
81
+ {"current_steps": 405, "total_steps": 818, "loss": 0.0009, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.538404267547908e-05, "epoch": 0.49, "percentage": 49.51, "elapsed_time": "0:39:00", "remaining_time": "0:39:46"}
82
+ {"current_steps": 410, "total_steps": 818, "loss": 0.018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4903985790632835e-05, "epoch": 0.5, "percentage": 50.12, "elapsed_time": "0:39:19", "remaining_time": "0:39:07"}
83
+ {"current_steps": 415, "total_steps": 818, "loss": 0.0238, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4423964310029458e-05, "epoch": 0.51, "percentage": 50.73, "elapsed_time": "0:39:39", "remaining_time": "0:38:30"}
84
+ {"current_steps": 420, "total_steps": 818, "loss": 0.0064, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3944155236606196e-05, "epoch": 0.51, "percentage": 51.34, "elapsed_time": "0:39:59", "remaining_time": "0:37:53"}
85
+ {"current_steps": 425, "total_steps": 818, "loss": 0.0273, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3464735494977392e-05, "epoch": 0.52, "percentage": 51.96, "elapsed_time": "0:40:19", "remaining_time": "0:37:17"}
86
+ {"current_steps": 430, "total_steps": 818, "loss": 0.0045, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2985881866195307e-05, "epoch": 0.53, "percentage": 52.57, "elapsed_time": "0:40:39", "remaining_time": "0:36:40"}
87
+ {"current_steps": 435, "total_steps": 818, "loss": 0.0233, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2507770922563966e-05, "epoch": 0.53, "percentage": 53.18, "elapsed_time": "0:40:58", "remaining_time": "0:36:04"}
88
+ {"current_steps": 440, "total_steps": 818, "loss": 0.0019, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2030578962529964e-05, "epoch": 0.54, "percentage": 53.79, "elapsed_time": "0:41:16", "remaining_time": "0:35:27"}
89
+ {"current_steps": 445, "total_steps": 818, "loss": 0.0027, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.155448194567425e-05, "epoch": 0.54, "percentage": 54.4, "elapsed_time": "0:41:36", "remaining_time": "0:34:52"}
90
+ {"current_steps": 450, "total_steps": 818, "loss": 0.0246, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1079655427828807e-05, "epoch": 0.55, "percentage": 55.01, "elapsed_time": "0:41:55", "remaining_time": "0:34:16"}
91
+ {"current_steps": 455, "total_steps": 818, "loss": 0.0128, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.060627449634234e-05, "epoch": 0.56, "percentage": 55.62, "elapsed_time": "0:42:14", "remaining_time": "0:33:41"}
92
+ {"current_steps": 460, "total_steps": 818, "loss": 0.0205, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0134513705518547e-05, "epoch": 0.56, "percentage": 56.23, "elapsed_time": "0:42:32", "remaining_time": "0:33:06"}
93
+ {"current_steps": 465, "total_steps": 818, "loss": 0.0135, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9664547012251122e-05, "epoch": 0.57, "percentage": 56.85, "elapsed_time": "0:42:52", "remaining_time": "0:32:32"}
94
+ {"current_steps": 470, "total_steps": 818, "loss": 0.009, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9196547711878883e-05, "epoch": 0.57, "percentage": 57.46, "elapsed_time": "0:43:11", "remaining_time": "0:31:58"}
95
+ {"current_steps": 475, "total_steps": 818, "loss": 0.0289, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.873068837428497e-05, "epoch": 0.58, "percentage": 58.07, "elapsed_time": "0:43:30", "remaining_time": "0:31:25"}
96
+ {"current_steps": 480, "total_steps": 818, "loss": 0.0587, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8267140780263427e-05, "epoch": 0.59, "percentage": 58.68, "elapsed_time": "0:43:49", "remaining_time": "0:30:51"}
97
+ {"current_steps": 485, "total_steps": 818, "loss": 0.0152, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7806075858176903e-05, "epoch": 0.59, "percentage": 59.29, "elapsed_time": "0:44:09", "remaining_time": "0:30:19"}
98
+ {"current_steps": 490, "total_steps": 818, "loss": 0.0148, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7347663620928495e-05, "epoch": 0.6, "percentage": 59.9, "elapsed_time": "0:44:28", "remaining_time": "0:29:46"}
99
+ {"current_steps": 495, "total_steps": 818, "loss": 0.0339, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6892073103271355e-05, "epoch": 0.6, "percentage": 60.51, "elapsed_time": "0:44:48", "remaining_time": "0:29:14"}
100
+ {"current_steps": 500, "total_steps": 818, "loss": 0.0227, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6439472299478803e-05, "epoch": 0.61, "percentage": 61.12, "elapsed_time": "0:45:12", "remaining_time": "0:28:44"}
101
+ {"current_steps": 505, "total_steps": 818, "loss": 0.0308, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5990028101398234e-05, "epoch": 0.62, "percentage": 61.74, "elapsed_time": "0:45:31", "remaining_time": "0:28:13"}
102
+ {"current_steps": 510, "total_steps": 818, "loss": 0.0014, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5543906236911424e-05, "epoch": 0.62, "percentage": 62.35, "elapsed_time": "0:45:51", "remaining_time": "0:27:41"}
103
+ {"current_steps": 515, "total_steps": 818, "loss": 0.0023, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5101271208824168e-05, "epoch": 0.63, "percentage": 62.96, "elapsed_time": "0:46:09", "remaining_time": "0:27:09"}
104
+ {"current_steps": 520, "total_steps": 818, "loss": 0.0098, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4662286234207512e-05, "epoch": 0.64, "percentage": 63.57, "elapsed_time": "0:46:28", "remaining_time": "0:26:38"}
105
+ {"current_steps": 525, "total_steps": 818, "loss": 0.0209, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4227113184213198e-05, "epoch": 0.64, "percentage": 64.18, "elapsed_time": "0:46:48", "remaining_time": "0:26:07"}
106
+ {"current_steps": 530, "total_steps": 818, "loss": 0.0026, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3795912524385323e-05, "epoch": 0.65, "percentage": 64.79, "elapsed_time": "0:47:07", "remaining_time": "0:25:36"}
107
+ {"current_steps": 535, "total_steps": 818, "loss": 0.0309, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3368843255490383e-05, "epoch": 0.65, "percentage": 65.4, "elapsed_time": "0:47:25", "remaining_time": "0:25:05"}
108
+ {"current_steps": 540, "total_steps": 818, "loss": 0.0016, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2946062854887313e-05, "epoch": 0.66, "percentage": 66.01, "elapsed_time": "0:47:44", "remaining_time": "0:24:34"}
109
+ {"current_steps": 545, "total_steps": 818, "loss": 0.0083, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.252772721845945e-05, "epoch": 0.67, "percentage": 66.63, "elapsed_time": "0:48:03", "remaining_time": "0:24:04"}
110
+ {"current_steps": 550, "total_steps": 818, "loss": 0.0041, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2113990603129433e-05, "epoch": 0.67, "percentage": 67.24, "elapsed_time": "0:48:22", "remaining_time": "0:23:34"}
111
+ {"current_steps": 555, "total_steps": 818, "loss": 0.0195, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1705005569978664e-05, "epoch": 0.68, "percentage": 67.85, "elapsed_time": "0:48:40", "remaining_time": "0:23:04"}
112
+ {"current_steps": 560, "total_steps": 818, "loss": 0.0216, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1300922927991913e-05, "epoch": 0.68, "percentage": 68.46, "elapsed_time": "0:48:59", "remaining_time": "0:22:34"}
113
+ {"current_steps": 565, "total_steps": 818, "loss": 0.0304, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0901891678448144e-05, "epoch": 0.69, "percentage": 69.07, "elapsed_time": "0:49:19", "remaining_time": "0:22:05"}
114
+ {"current_steps": 570, "total_steps": 818, "loss": 0.0028, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0508058959977757e-05, "epoch": 0.7, "percentage": 69.68, "elapsed_time": "0:49:38", "remaining_time": "0:21:35"}
115
+ {"current_steps": 575, "total_steps": 818, "loss": 0.0037, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0119569994306841e-05, "epoch": 0.7, "percentage": 70.29, "elapsed_time": "0:49:59", "remaining_time": "0:21:07"}
116
+ {"current_steps": 580, "total_steps": 818, "loss": 0.0062, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.736568032708069e-06, "epoch": 0.71, "percentage": 70.9, "elapsed_time": "0:50:19", "remaining_time": "0:20:39"}
117
+ {"current_steps": 585, "total_steps": 818, "loss": 0.0018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.359194303178371e-06, "epoch": 0.71, "percentage": 71.52, "elapsed_time": "0:50:38", "remaining_time": "0:20:10"}
118
+ {"current_steps": 590, "total_steps": 818, "loss": 0.0052, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.987587958362517e-06, "epoch": 0.72, "percentage": 72.13, "elapsed_time": "0:50:57", "remaining_time": "0:19:41"}
119
+ {"current_steps": 595, "total_steps": 818, "loss": 0.0419, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.621886024242057e-06, "epoch": 0.73, "percentage": 72.74, "elapsed_time": "0:51:17", "remaining_time": "0:19:13"}
120
+ {"current_steps": 600, "total_steps": 818, "loss": 0.0037, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.262223349608366e-06, "epoch": 0.73, "percentage": 73.35, "elapsed_time": "0:51:36", "remaining_time": "0:18:45"}
121
+ {"current_steps": 605, "total_steps": 818, "loss": 0.0027, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.908732556338628e-06, "epoch": 0.74, "percentage": 73.96, "elapsed_time": "0:51:56", "remaining_time": "0:18:17"}
122
+ {"current_steps": 610, "total_steps": 818, "loss": 0.0571, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.561543990492803e-06, "epoch": 0.75, "percentage": 74.57, "elapsed_time": "0:52:15", "remaining_time": "0:17:49"}
123
+ {"current_steps": 615, "total_steps": 818, "loss": 0.0077, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.2207856742499695e-06, "epoch": 0.75, "percentage": 75.18, "elapsed_time": "0:52:34", "remaining_time": "0:17:21"}
124
+ {"current_steps": 620, "total_steps": 818, "loss": 0.0448, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.886583258701382e-06, "epoch": 0.76, "percentage": 75.79, "elapsed_time": "0:52:56", "remaining_time": "0:16:54"}
125
+ {"current_steps": 625, "total_steps": 818, "loss": 0.0117, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.559059977518017e-06, "epoch": 0.76, "percentage": 76.41, "elapsed_time": "0:53:21", "remaining_time": "0:16:28"}
126
+ {"current_steps": 630, "total_steps": 818, "loss": 0.0025, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.238336601509365e-06, "epoch": 0.77, "percentage": 77.02, "elapsed_time": "0:53:48", "remaining_time": "0:16:03"}
127
+ {"current_steps": 635, "total_steps": 818, "loss": 0.0024, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.92453139409051e-06, "epoch": 0.78, "percentage": 77.63, "elapsed_time": "0:54:13", "remaining_time": "0:15:37"}
128
+ {"current_steps": 640, "total_steps": 818, "loss": 0.0329, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.617760067673666e-06, "epoch": 0.78, "percentage": 78.24, "elapsed_time": "0:54:37", "remaining_time": "0:15:11"}
129
+ {"current_steps": 645, "total_steps": 818, "loss": 0.0176, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.318135741000488e-06, "epoch": 0.79, "percentage": 78.85, "elapsed_time": "0:54:59", "remaining_time": "0:14:45"}
130
+ {"current_steps": 650, "total_steps": 818, "loss": 0.0184, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.025768897430644e-06, "epoch": 0.79, "percentage": 79.46, "elapsed_time": "0:55:23", "remaining_time": "0:14:18"}
131
+ {"current_steps": 655, "total_steps": 818, "loss": 0.0028, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.740767344202282e-06, "epoch": 0.8, "percentage": 80.07, "elapsed_time": "0:55:47", "remaining_time": "0:13:53"}
132
+ {"current_steps": 660, "total_steps": 818, "loss": 0.0018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.463236172679192e-06, "epoch": 0.81, "percentage": 80.68, "elapsed_time": "0:56:09", "remaining_time": "0:13:26"}
133
+ {"current_steps": 665, "total_steps": 818, "loss": 0.0275, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.193277719599481e-06, "epoch": 0.81, "percentage": 81.3, "elapsed_time": "0:56:31", "remaining_time": "0:13:00"}
134
+ {"current_steps": 670, "total_steps": 818, "loss": 0.007, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.9309915293399366e-06, "epoch": 0.82, "percentage": 81.91, "elapsed_time": "0:56:53", "remaining_time": "0:12:33"}
135
+ {"current_steps": 675, "total_steps": 818, "loss": 0.0182, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.676474317210099e-06, "epoch": 0.82, "percentage": 82.52, "elapsed_time": "0:57:12", "remaining_time": "0:12:07"}
136
+ {"current_steps": 680, "total_steps": 818, "loss": 0.0015, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.4298199337894685e-06, "epoch": 0.83, "percentage": 83.13, "elapsed_time": "0:57:31", "remaining_time": "0:11:40"}
137
+ {"current_steps": 685, "total_steps": 818, "loss": 0.0018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.1911193303211185e-06, "epoch": 0.84, "percentage": 83.74, "elapsed_time": "0:57:49", "remaining_time": "0:11:13"}
138
+ {"current_steps": 690, "total_steps": 818, "loss": 0.0024, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9604605251743136e-06, "epoch": 0.84, "percentage": 84.35, "elapsed_time": "0:58:08", "remaining_time": "0:10:47"}
139
+ {"current_steps": 695, "total_steps": 818, "loss": 0.0023, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7379285713886954e-06, "epoch": 0.85, "percentage": 84.96, "elapsed_time": "0:58:29", "remaining_time": "0:10:21"}
140
+ {"current_steps": 700, "total_steps": 818, "loss": 0.0048, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5236055253118423e-06, "epoch": 0.85, "percentage": 85.57, "elapsed_time": "0:58:50", "remaining_time": "0:09:55"}
141
+ {"current_steps": 705, "total_steps": 818, "loss": 0.0022, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3175704163418353e-06, "epoch": 0.86, "percentage": 86.19, "elapsed_time": "0:59:10", "remaining_time": "0:09:29"}
142
+ {"current_steps": 710, "total_steps": 818, "loss": 0.0246, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.119899217785995e-06, "epoch": 0.87, "percentage": 86.8, "elapsed_time": "0:59:30", "remaining_time": "0:09:03"}
143
+ {"current_steps": 715, "total_steps": 818, "loss": 0.0014, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9306648188465252e-06, "epoch": 0.87, "percentage": 87.41, "elapsed_time": "0:59:49", "remaining_time": "0:08:37"}
144
+ {"current_steps": 720, "total_steps": 818, "loss": 0.0012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7499369977433456e-06, "epoch": 0.88, "percentage": 88.02, "elapsed_time": "1:00:09", "remaining_time": "0:08:11"}
145
+ {"current_steps": 725, "total_steps": 818, "loss": 0.0812, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.577782395984126e-06, "epoch": 0.89, "percentage": 88.63, "elapsed_time": "1:00:29", "remaining_time": "0:07:45"}
146
+ {"current_steps": 730, "total_steps": 818, "loss": 0.0427, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4142644937909206e-06, "epoch": 0.89, "percentage": 89.24, "elapsed_time": "1:00:49", "remaining_time": "0:07:19"}
147
+ {"current_steps": 735, "total_steps": 818, "loss": 0.0075, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2594435866924686e-06, "epoch": 0.9, "percentage": 89.85, "elapsed_time": "1:01:08", "remaining_time": "0:06:54"}
148
+ {"current_steps": 740, "total_steps": 818, "loss": 0.0267, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.113376763290877e-06, "epoch": 0.9, "percentage": 90.46, "elapsed_time": "1:01:28", "remaining_time": "0:06:28"}
149
+ {"current_steps": 745, "total_steps": 818, "loss": 0.0237, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.761178842107699e-07, "epoch": 0.91, "percentage": 91.08, "elapsed_time": "1:01:47", "remaining_time": "0:06:03"}
150
+ {"current_steps": 750, "total_steps": 818, "loss": 0.0269, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.477175622387562e-07, "epoch": 0.92, "percentage": 91.69, "elapsed_time": "1:02:06", "remaining_time": "0:05:37"}
151
+ {"current_steps": 755, "total_steps": 818, "loss": 0.0014, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.282231436604698e-07, "epoch": 0.92, "percentage": 92.3, "elapsed_time": "1:02:24", "remaining_time": "0:05:12"}
152
+ {"current_steps": 760, "total_steps": 818, "loss": 0.0012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.176786908021453e-07, "epoch": 0.93, "percentage": 92.91, "elapsed_time": "1:02:43", "remaining_time": "0:04:47"}
153
+ {"current_steps": 765, "total_steps": 818, "loss": 0.0019, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.161249657830686e-07, "epoch": 0.93, "percentage": 93.52, "elapsed_time": "1:03:04", "remaining_time": "0:04:22"}
154
+ {"current_steps": 770, "total_steps": 818, "loss": 0.0036, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2359941548499037e-07, "epoch": 0.94, "percentage": 94.13, "elapsed_time": "1:03:24", "remaining_time": "0:03:57"}
155
+ {"current_steps": 775, "total_steps": 818, "loss": 0.0073, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.4013615774395323e-07, "epoch": 0.95, "percentage": 94.74, "elapsed_time": "1:03:44", "remaining_time": "0:03:32"}
156
+ {"current_steps": 780, "total_steps": 818, "loss": 0.0022, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.657659687697156e-07, "epoch": 0.95, "percentage": 95.35, "elapsed_time": "1:04:03", "remaining_time": "0:03:07"}
157
+ {"current_steps": 785, "total_steps": 818, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0051627179733247e-07, "epoch": 0.96, "percentage": 95.97, "elapsed_time": "1:04:22", "remaining_time": "0:02:42"}
158
+ {"current_steps": 790, "total_steps": 818, "loss": 0.0007, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.444111269751164e-07, "epoch": 0.96, "percentage": 96.58, "elapsed_time": "1:04:42", "remaining_time": "0:02:17"}
159
+ {"current_steps": 795, "total_steps": 818, "loss": 0.0016, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.747122249273156e-08, "epoch": 0.97, "percentage": 97.19, "elapsed_time": "1:05:01", "remaining_time": "0:01:52"}
160
+ {"current_steps": 800, "total_steps": 818, "loss": 0.0051, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.971386695260706e-08, "epoch": 0.98, "percentage": 97.8, "elapsed_time": "1:05:20", "remaining_time": "0:01:28"}
161
+ {"current_steps": 805, "total_steps": 818, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.1152982987595056e-08, "epoch": 0.98, "percentage": 98.41, "elapsed_time": "1:05:41", "remaining_time": "0:01:03"}
162
+ {"current_steps": 810, "total_steps": 818, "loss": 0.0054, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1799102127130202e-08, "epoch": 0.99, "percentage": 99.02, "elapsed_time": "1:06:02", "remaining_time": "0:00:39"}
163
+ {"current_steps": 815, "total_steps": 818, "loss": 0.0027, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6593609138415567e-09, "epoch": 1.0, "percentage": 99.63, "elapsed_time": "1:06:20", "remaining_time": "0:00:14"}
164
+ {"current_steps": 818, "total_steps": 818, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "1:06:32", "remaining_time": "0:00:00"}
165
+ {"current_steps": 4912, "total_steps": 4912, "loss": null, "eval_loss": 0.012725877575576305, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "1:35:11", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,1008 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9990839694656488,
5
+ "eval_steps": 1000,
6
+ "global_step": 818,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.999539075477821e-05,
14
+ "loss": 1.9867,
15
+ "step": 5
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 4.998156471872415e-05,
20
+ "loss": 1.5198,
21
+ "step": 10
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 4.995852699004508e-05,
26
+ "loss": 0.9883,
27
+ "step": 15
28
+ },
29
+ {
30
+ "epoch": 0.02,
31
+ "learning_rate": 4.992628606366426e-05,
32
+ "loss": 0.3031,
33
+ "step": 20
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 4.988485382808856e-05,
38
+ "loss": 0.0533,
39
+ "step": 25
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 4.983424556102469e-05,
44
+ "loss": 0.0318,
45
+ "step": 30
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 4.97744799237457e-05,
50
+ "loss": 0.0605,
51
+ "step": 35
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 4.970557895420984e-05,
56
+ "loss": 0.0126,
57
+ "step": 40
58
+ },
59
+ {
60
+ "epoch": 0.05,
61
+ "learning_rate": 4.9627568058934274e-05,
62
+ "loss": 0.0017,
63
+ "step": 45
64
+ },
65
+ {
66
+ "epoch": 0.06,
67
+ "learning_rate": 4.95404760036267e-05,
68
+ "loss": 0.0005,
69
+ "step": 50
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 4.9444334902578315e-05,
74
+ "loss": 0.0784,
75
+ "step": 55
76
+ },
77
+ {
78
+ "epoch": 0.07,
79
+ "learning_rate": 4.9339180206821955e-05,
80
+ "loss": 0.043,
81
+ "step": 60
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 4.922505069105995e-05,
86
+ "loss": 0.0022,
87
+ "step": 65
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 4.9101988439366295e-05,
92
+ "loss": 0.0101,
93
+ "step": 70
94
+ },
95
+ {
96
+ "epoch": 0.09,
97
+ "learning_rate": 4.897003882966866e-05,
98
+ "loss": 0.0471,
99
+ "step": 75
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 4.8829250517015684e-05,
104
+ "loss": 0.002,
105
+ "step": 80
106
+ },
107
+ {
108
+ "epoch": 0.1,
109
+ "learning_rate": 4.867967541563594e-05,
110
+ "loss": 0.0109,
111
+ "step": 85
112
+ },
113
+ {
114
+ "epoch": 0.11,
115
+ "learning_rate": 4.8521368679795154e-05,
116
+ "loss": 0.0322,
117
+ "step": 90
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 4.835438868345858e-05,
122
+ "loss": 0.0156,
123
+ "step": 95
124
+ },
125
+ {
126
+ "epoch": 0.12,
127
+ "learning_rate": 4.817879699876623e-05,
128
+ "loss": 0.0912,
129
+ "step": 100
130
+ },
131
+ {
132
+ "epoch": 0.13,
133
+ "learning_rate": 4.7994658373328804e-05,
134
+ "loss": 0.027,
135
+ "step": 105
136
+ },
137
+ {
138
+ "epoch": 0.13,
139
+ "learning_rate": 4.780204070635266e-05,
140
+ "loss": 0.027,
141
+ "step": 110
142
+ },
143
+ {
144
+ "epoch": 0.14,
145
+ "learning_rate": 4.760101502360268e-05,
146
+ "loss": 0.0206,
147
+ "step": 115
148
+ },
149
+ {
150
+ "epoch": 0.15,
151
+ "learning_rate": 4.739165545121228e-05,
152
+ "loss": 0.012,
153
+ "step": 120
154
+ },
155
+ {
156
+ "epoch": 0.15,
157
+ "learning_rate": 4.717403918835017e-05,
158
+ "loss": 0.002,
159
+ "step": 125
160
+ },
161
+ {
162
+ "epoch": 0.16,
163
+ "learning_rate": 4.694824647875391e-05,
164
+ "loss": 0.0052,
165
+ "step": 130
166
+ },
167
+ {
168
+ "epoch": 0.16,
169
+ "learning_rate": 4.6714360581140935e-05,
170
+ "loss": 0.0036,
171
+ "step": 135
172
+ },
173
+ {
174
+ "epoch": 0.17,
175
+ "learning_rate": 4.647246773850773e-05,
176
+ "loss": 0.0386,
177
+ "step": 140
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 4.6222657146328624e-05,
182
+ "loss": 0.0546,
183
+ "step": 145
184
+ },
185
+ {
186
+ "epoch": 0.18,
187
+ "learning_rate": 4.596502091966588e-05,
188
+ "loss": 0.0472,
189
+ "step": 150
190
+ },
191
+ {
192
+ "epoch": 0.19,
193
+ "learning_rate": 4.5699654059203225e-05,
194
+ "loss": 0.0779,
195
+ "step": 155
196
+ },
197
+ {
198
+ "epoch": 0.2,
199
+ "learning_rate": 4.542665441621537e-05,
200
+ "loss": 0.0169,
201
+ "step": 160
202
+ },
203
+ {
204
+ "epoch": 0.2,
205
+ "learning_rate": 4.51461226564863e-05,
206
+ "loss": 0.0249,
207
+ "step": 165
208
+ },
209
+ {
210
+ "epoch": 0.21,
211
+ "learning_rate": 4.485816222318986e-05,
212
+ "loss": 0.0132,
213
+ "step": 170
214
+ },
215
+ {
216
+ "epoch": 0.21,
217
+ "learning_rate": 4.4562879298746165e-05,
218
+ "loss": 0.0163,
219
+ "step": 175
220
+ },
221
+ {
222
+ "epoch": 0.22,
223
+ "learning_rate": 4.4260382765667875e-05,
224
+ "loss": 0.0181,
225
+ "step": 180
226
+ },
227
+ {
228
+ "epoch": 0.23,
229
+ "learning_rate": 4.395078416641099e-05,
230
+ "loss": 0.0421,
231
+ "step": 185
232
+ },
233
+ {
234
+ "epoch": 0.23,
235
+ "learning_rate": 4.363419766224464e-05,
236
+ "loss": 0.0011,
237
+ "step": 190
238
+ },
239
+ {
240
+ "epoch": 0.24,
241
+ "learning_rate": 4.3310739991155365e-05,
242
+ "loss": 0.0062,
243
+ "step": 195
244
+ },
245
+ {
246
+ "epoch": 0.24,
247
+ "learning_rate": 4.2980530424801146e-05,
248
+ "loss": 0.0013,
249
+ "step": 200
250
+ },
251
+ {
252
+ "epoch": 0.25,
253
+ "learning_rate": 4.264369072453126e-05,
254
+ "loss": 0.0515,
255
+ "step": 205
256
+ },
257
+ {
258
+ "epoch": 0.26,
259
+ "learning_rate": 4.230034509648803e-05,
260
+ "loss": 0.009,
261
+ "step": 210
262
+ },
263
+ {
264
+ "epoch": 0.26,
265
+ "learning_rate": 4.19506201458071e-05,
266
+ "loss": 0.0132,
267
+ "step": 215
268
+ },
269
+ {
270
+ "epoch": 0.27,
271
+ "learning_rate": 4.159464482993308e-05,
272
+ "loss": 0.0092,
273
+ "step": 220
274
+ },
275
+ {
276
+ "epoch": 0.27,
277
+ "learning_rate": 4.123255041106788e-05,
278
+ "loss": 0.0429,
279
+ "step": 225
280
+ },
281
+ {
282
+ "epoch": 0.28,
283
+ "learning_rate": 4.0864470407769114e-05,
284
+ "loss": 0.0381,
285
+ "step": 230
286
+ },
287
+ {
288
+ "epoch": 0.29,
289
+ "learning_rate": 4.049054054571648e-05,
290
+ "loss": 0.062,
291
+ "step": 235
292
+ },
293
+ {
294
+ "epoch": 0.29,
295
+ "learning_rate": 4.011089870766437e-05,
296
+ "loss": 0.0134,
297
+ "step": 240
298
+ },
299
+ {
300
+ "epoch": 0.3,
301
+ "learning_rate": 3.972568488259905e-05,
302
+ "loss": 0.0167,
303
+ "step": 245
304
+ },
305
+ {
306
+ "epoch": 0.31,
307
+ "learning_rate": 3.93350411141191e-05,
308
+ "loss": 0.0143,
309
+ "step": 250
310
+ },
311
+ {
312
+ "epoch": 0.31,
313
+ "learning_rate": 3.8939111448058404e-05,
314
+ "loss": 0.0276,
315
+ "step": 255
316
+ },
317
+ {
318
+ "epoch": 0.32,
319
+ "learning_rate": 3.853804187937066e-05,
320
+ "loss": 0.0636,
321
+ "step": 260
322
+ },
323
+ {
324
+ "epoch": 0.32,
325
+ "learning_rate": 3.813198029829532e-05,
326
+ "loss": 0.0279,
327
+ "step": 265
328
+ },
329
+ {
330
+ "epoch": 0.33,
331
+ "learning_rate": 3.772107643582458e-05,
332
+ "loss": 0.0518,
333
+ "step": 270
334
+ },
335
+ {
336
+ "epoch": 0.34,
337
+ "learning_rate": 3.730548180849161e-05,
338
+ "loss": 0.0189,
339
+ "step": 275
340
+ },
341
+ {
342
+ "epoch": 0.34,
343
+ "learning_rate": 3.688534966250042e-05,
344
+ "loss": 0.0099,
345
+ "step": 280
346
+ },
347
+ {
348
+ "epoch": 0.35,
349
+ "learning_rate": 3.646083491721794e-05,
350
+ "loss": 0.0045,
351
+ "step": 285
352
+ },
353
+ {
354
+ "epoch": 0.35,
355
+ "learning_rate": 3.603209410804906e-05,
356
+ "loss": 0.003,
357
+ "step": 290
358
+ },
359
+ {
360
+ "epoch": 0.36,
361
+ "learning_rate": 3.559928532871587e-05,
362
+ "loss": 0.0229,
363
+ "step": 295
364
+ },
365
+ {
366
+ "epoch": 0.37,
367
+ "learning_rate": 3.516256817296222e-05,
368
+ "loss": 0.0148,
369
+ "step": 300
370
+ },
371
+ {
372
+ "epoch": 0.37,
373
+ "learning_rate": 3.472210367570518e-05,
374
+ "loss": 0.0131,
375
+ "step": 305
376
+ },
377
+ {
378
+ "epoch": 0.38,
379
+ "learning_rate": 3.427805425365509e-05,
380
+ "loss": 0.0104,
381
+ "step": 310
382
+ },
383
+ {
384
+ "epoch": 0.38,
385
+ "learning_rate": 3.383058364542611e-05,
386
+ "loss": 0.027,
387
+ "step": 315
388
+ },
389
+ {
390
+ "epoch": 0.39,
391
+ "learning_rate": 3.3379856851159267e-05,
392
+ "loss": 0.0023,
393
+ "step": 320
394
+ },
395
+ {
396
+ "epoch": 0.4,
397
+ "learning_rate": 3.292604007168037e-05,
398
+ "loss": 0.0019,
399
+ "step": 325
400
+ },
401
+ {
402
+ "epoch": 0.4,
403
+ "learning_rate": 3.246930064721524e-05,
404
+ "loss": 0.0023,
405
+ "step": 330
406
+ },
407
+ {
408
+ "epoch": 0.41,
409
+ "learning_rate": 3.200980699568463e-05,
410
+ "loss": 0.0248,
411
+ "step": 335
412
+ },
413
+ {
414
+ "epoch": 0.42,
415
+ "learning_rate": 3.154772855060198e-05,
416
+ "loss": 0.0134,
417
+ "step": 340
418
+ },
419
+ {
420
+ "epoch": 0.42,
421
+ "learning_rate": 3.1083235698596505e-05,
422
+ "loss": 0.0011,
423
+ "step": 345
424
+ },
425
+ {
426
+ "epoch": 0.43,
427
+ "learning_rate": 3.061649971658488e-05,
428
+ "loss": 0.0202,
429
+ "step": 350
430
+ },
431
+ {
432
+ "epoch": 0.43,
433
+ "learning_rate": 3.01476927086147e-05,
434
+ "loss": 0.001,
435
+ "step": 355
436
+ },
437
+ {
438
+ "epoch": 0.44,
439
+ "learning_rate": 2.967698754240289e-05,
440
+ "loss": 0.056,
441
+ "step": 360
442
+ },
443
+ {
444
+ "epoch": 0.45,
445
+ "learning_rate": 2.92045577855925e-05,
446
+ "loss": 0.0097,
447
+ "step": 365
448
+ },
449
+ {
450
+ "epoch": 0.45,
451
+ "learning_rate": 2.8730577641751476e-05,
452
+ "loss": 0.062,
453
+ "step": 370
454
+ },
455
+ {
456
+ "epoch": 0.46,
457
+ "learning_rate": 2.825522188613686e-05,
458
+ "loss": 0.0022,
459
+ "step": 375
460
+ },
461
+ {
462
+ "epoch": 0.46,
463
+ "learning_rate": 2.7778665801248292e-05,
464
+ "loss": 0.0012,
465
+ "step": 380
466
+ },
467
+ {
468
+ "epoch": 0.47,
469
+ "learning_rate": 2.730108511219433e-05,
470
+ "loss": 0.0058,
471
+ "step": 385
472
+ },
473
+ {
474
+ "epoch": 0.48,
475
+ "learning_rate": 2.6822655921895695e-05,
476
+ "loss": 0.0053,
477
+ "step": 390
478
+ },
479
+ {
480
+ "epoch": 0.48,
481
+ "learning_rate": 2.6343554646149154e-05,
482
+ "loss": 0.0012,
483
+ "step": 395
484
+ },
485
+ {
486
+ "epoch": 0.49,
487
+ "learning_rate": 2.586395794857597e-05,
488
+ "loss": 0.0206,
489
+ "step": 400
490
+ },
491
+ {
492
+ "epoch": 0.49,
493
+ "learning_rate": 2.538404267547908e-05,
494
+ "loss": 0.0009,
495
+ "step": 405
496
+ },
497
+ {
498
+ "epoch": 0.5,
499
+ "learning_rate": 2.4903985790632835e-05,
500
+ "loss": 0.018,
501
+ "step": 410
502
+ },
503
+ {
504
+ "epoch": 0.51,
505
+ "learning_rate": 2.4423964310029458e-05,
506
+ "loss": 0.0238,
507
+ "step": 415
508
+ },
509
+ {
510
+ "epoch": 0.51,
511
+ "learning_rate": 2.3944155236606196e-05,
512
+ "loss": 0.0064,
513
+ "step": 420
514
+ },
515
+ {
516
+ "epoch": 0.52,
517
+ "learning_rate": 2.3464735494977392e-05,
518
+ "loss": 0.0273,
519
+ "step": 425
520
+ },
521
+ {
522
+ "epoch": 0.53,
523
+ "learning_rate": 2.2985881866195307e-05,
524
+ "loss": 0.0045,
525
+ "step": 430
526
+ },
527
+ {
528
+ "epoch": 0.53,
529
+ "learning_rate": 2.2507770922563966e-05,
530
+ "loss": 0.0233,
531
+ "step": 435
532
+ },
533
+ {
534
+ "epoch": 0.54,
535
+ "learning_rate": 2.2030578962529964e-05,
536
+ "loss": 0.0019,
537
+ "step": 440
538
+ },
539
+ {
540
+ "epoch": 0.54,
541
+ "learning_rate": 2.155448194567425e-05,
542
+ "loss": 0.0027,
543
+ "step": 445
544
+ },
545
+ {
546
+ "epoch": 0.55,
547
+ "learning_rate": 2.1079655427828807e-05,
548
+ "loss": 0.0246,
549
+ "step": 450
550
+ },
551
+ {
552
+ "epoch": 0.56,
553
+ "learning_rate": 2.060627449634234e-05,
554
+ "loss": 0.0128,
555
+ "step": 455
556
+ },
557
+ {
558
+ "epoch": 0.56,
559
+ "learning_rate": 2.0134513705518547e-05,
560
+ "loss": 0.0205,
561
+ "step": 460
562
+ },
563
+ {
564
+ "epoch": 0.57,
565
+ "learning_rate": 1.9664547012251122e-05,
566
+ "loss": 0.0135,
567
+ "step": 465
568
+ },
569
+ {
570
+ "epoch": 0.57,
571
+ "learning_rate": 1.9196547711878883e-05,
572
+ "loss": 0.009,
573
+ "step": 470
574
+ },
575
+ {
576
+ "epoch": 0.58,
577
+ "learning_rate": 1.873068837428497e-05,
578
+ "loss": 0.0289,
579
+ "step": 475
580
+ },
581
+ {
582
+ "epoch": 0.59,
583
+ "learning_rate": 1.8267140780263427e-05,
584
+ "loss": 0.0587,
585
+ "step": 480
586
+ },
587
+ {
588
+ "epoch": 0.59,
589
+ "learning_rate": 1.7806075858176903e-05,
590
+ "loss": 0.0152,
591
+ "step": 485
592
+ },
593
+ {
594
+ "epoch": 0.6,
595
+ "learning_rate": 1.7347663620928495e-05,
596
+ "loss": 0.0148,
597
+ "step": 490
598
+ },
599
+ {
600
+ "epoch": 0.6,
601
+ "learning_rate": 1.6892073103271355e-05,
602
+ "loss": 0.0339,
603
+ "step": 495
604
+ },
605
+ {
606
+ "epoch": 0.61,
607
+ "learning_rate": 1.6439472299478803e-05,
608
+ "loss": 0.0227,
609
+ "step": 500
610
+ },
611
+ {
612
+ "epoch": 0.62,
613
+ "learning_rate": 1.5990028101398234e-05,
614
+ "loss": 0.0308,
615
+ "step": 505
616
+ },
617
+ {
618
+ "epoch": 0.62,
619
+ "learning_rate": 1.5543906236911424e-05,
620
+ "loss": 0.0014,
621
+ "step": 510
622
+ },
623
+ {
624
+ "epoch": 0.63,
625
+ "learning_rate": 1.5101271208824168e-05,
626
+ "loss": 0.0023,
627
+ "step": 515
628
+ },
629
+ {
630
+ "epoch": 0.64,
631
+ "learning_rate": 1.4662286234207512e-05,
632
+ "loss": 0.0098,
633
+ "step": 520
634
+ },
635
+ {
636
+ "epoch": 0.64,
637
+ "learning_rate": 1.4227113184213198e-05,
638
+ "loss": 0.0209,
639
+ "step": 525
640
+ },
641
+ {
642
+ "epoch": 0.65,
643
+ "learning_rate": 1.3795912524385323e-05,
644
+ "loss": 0.0026,
645
+ "step": 530
646
+ },
647
+ {
648
+ "epoch": 0.65,
649
+ "learning_rate": 1.3368843255490383e-05,
650
+ "loss": 0.0309,
651
+ "step": 535
652
+ },
653
+ {
654
+ "epoch": 0.66,
655
+ "learning_rate": 1.2946062854887313e-05,
656
+ "loss": 0.0016,
657
+ "step": 540
658
+ },
659
+ {
660
+ "epoch": 0.67,
661
+ "learning_rate": 1.252772721845945e-05,
662
+ "loss": 0.0083,
663
+ "step": 545
664
+ },
665
+ {
666
+ "epoch": 0.67,
667
+ "learning_rate": 1.2113990603129433e-05,
668
+ "loss": 0.0041,
669
+ "step": 550
670
+ },
671
+ {
672
+ "epoch": 0.68,
673
+ "learning_rate": 1.1705005569978664e-05,
674
+ "loss": 0.0195,
675
+ "step": 555
676
+ },
677
+ {
678
+ "epoch": 0.68,
679
+ "learning_rate": 1.1300922927991913e-05,
680
+ "loss": 0.0216,
681
+ "step": 560
682
+ },
683
+ {
684
+ "epoch": 0.69,
685
+ "learning_rate": 1.0901891678448144e-05,
686
+ "loss": 0.0304,
687
+ "step": 565
688
+ },
689
+ {
690
+ "epoch": 0.7,
691
+ "learning_rate": 1.0508058959977757e-05,
692
+ "loss": 0.0028,
693
+ "step": 570
694
+ },
695
+ {
696
+ "epoch": 0.7,
697
+ "learning_rate": 1.0119569994306841e-05,
698
+ "loss": 0.0037,
699
+ "step": 575
700
+ },
701
+ {
702
+ "epoch": 0.71,
703
+ "learning_rate": 9.736568032708069e-06,
704
+ "loss": 0.0062,
705
+ "step": 580
706
+ },
707
+ {
708
+ "epoch": 0.71,
709
+ "learning_rate": 9.359194303178371e-06,
710
+ "loss": 0.0018,
711
+ "step": 585
712
+ },
713
+ {
714
+ "epoch": 0.72,
715
+ "learning_rate": 8.987587958362517e-06,
716
+ "loss": 0.0052,
717
+ "step": 590
718
+ },
719
+ {
720
+ "epoch": 0.73,
721
+ "learning_rate": 8.621886024242057e-06,
722
+ "loss": 0.0419,
723
+ "step": 595
724
+ },
725
+ {
726
+ "epoch": 0.73,
727
+ "learning_rate": 8.262223349608366e-06,
728
+ "loss": 0.0037,
729
+ "step": 600
730
+ },
731
+ {
732
+ "epoch": 0.74,
733
+ "learning_rate": 7.908732556338628e-06,
734
+ "loss": 0.0027,
735
+ "step": 605
736
+ },
737
+ {
738
+ "epoch": 0.75,
739
+ "learning_rate": 7.561543990492803e-06,
740
+ "loss": 0.0571,
741
+ "step": 610
742
+ },
743
+ {
744
+ "epoch": 0.75,
745
+ "learning_rate": 7.2207856742499695e-06,
746
+ "loss": 0.0077,
747
+ "step": 615
748
+ },
749
+ {
750
+ "epoch": 0.76,
751
+ "learning_rate": 6.886583258701382e-06,
752
+ "loss": 0.0448,
753
+ "step": 620
754
+ },
755
+ {
756
+ "epoch": 0.76,
757
+ "learning_rate": 6.559059977518017e-06,
758
+ "loss": 0.0117,
759
+ "step": 625
760
+ },
761
+ {
762
+ "epoch": 0.77,
763
+ "learning_rate": 6.238336601509365e-06,
764
+ "loss": 0.0025,
765
+ "step": 630
766
+ },
767
+ {
768
+ "epoch": 0.78,
769
+ "learning_rate": 5.92453139409051e-06,
770
+ "loss": 0.0024,
771
+ "step": 635
772
+ },
773
+ {
774
+ "epoch": 0.78,
775
+ "learning_rate": 5.617760067673666e-06,
776
+ "loss": 0.0329,
777
+ "step": 640
778
+ },
779
+ {
780
+ "epoch": 0.79,
781
+ "learning_rate": 5.318135741000488e-06,
782
+ "loss": 0.0176,
783
+ "step": 645
784
+ },
785
+ {
786
+ "epoch": 0.79,
787
+ "learning_rate": 5.025768897430644e-06,
788
+ "loss": 0.0184,
789
+ "step": 650
790
+ },
791
+ {
792
+ "epoch": 0.8,
793
+ "learning_rate": 4.740767344202282e-06,
794
+ "loss": 0.0028,
795
+ "step": 655
796
+ },
797
+ {
798
+ "epoch": 0.81,
799
+ "learning_rate": 4.463236172679192e-06,
800
+ "loss": 0.0018,
801
+ "step": 660
802
+ },
803
+ {
804
+ "epoch": 0.81,
805
+ "learning_rate": 4.193277719599481e-06,
806
+ "loss": 0.0275,
807
+ "step": 665
808
+ },
809
+ {
810
+ "epoch": 0.82,
811
+ "learning_rate": 3.9309915293399366e-06,
812
+ "loss": 0.007,
813
+ "step": 670
814
+ },
815
+ {
816
+ "epoch": 0.82,
817
+ "learning_rate": 3.676474317210099e-06,
818
+ "loss": 0.0182,
819
+ "step": 675
820
+ },
821
+ {
822
+ "epoch": 0.83,
823
+ "learning_rate": 3.4298199337894685e-06,
824
+ "loss": 0.0015,
825
+ "step": 680
826
+ },
827
+ {
828
+ "epoch": 0.84,
829
+ "learning_rate": 3.1911193303211185e-06,
830
+ "loss": 0.0018,
831
+ "step": 685
832
+ },
833
+ {
834
+ "epoch": 0.84,
835
+ "learning_rate": 2.9604605251743136e-06,
836
+ "loss": 0.0024,
837
+ "step": 690
838
+ },
839
+ {
840
+ "epoch": 0.85,
841
+ "learning_rate": 2.7379285713886954e-06,
842
+ "loss": 0.0023,
843
+ "step": 695
844
+ },
845
+ {
846
+ "epoch": 0.85,
847
+ "learning_rate": 2.5236055253118423e-06,
848
+ "loss": 0.0048,
849
+ "step": 700
850
+ },
851
+ {
852
+ "epoch": 0.86,
853
+ "learning_rate": 2.3175704163418353e-06,
854
+ "loss": 0.0022,
855
+ "step": 705
856
+ },
857
+ {
858
+ "epoch": 0.87,
859
+ "learning_rate": 2.119899217785995e-06,
860
+ "loss": 0.0246,
861
+ "step": 710
862
+ },
863
+ {
864
+ "epoch": 0.87,
865
+ "learning_rate": 1.9306648188465252e-06,
866
+ "loss": 0.0014,
867
+ "step": 715
868
+ },
869
+ {
870
+ "epoch": 0.88,
871
+ "learning_rate": 1.7499369977433456e-06,
872
+ "loss": 0.0012,
873
+ "step": 720
874
+ },
875
+ {
876
+ "epoch": 0.89,
877
+ "learning_rate": 1.577782395984126e-06,
878
+ "loss": 0.0812,
879
+ "step": 725
880
+ },
881
+ {
882
+ "epoch": 0.89,
883
+ "learning_rate": 1.4142644937909206e-06,
884
+ "loss": 0.0427,
885
+ "step": 730
886
+ },
887
+ {
888
+ "epoch": 0.9,
889
+ "learning_rate": 1.2594435866924686e-06,
890
+ "loss": 0.0075,
891
+ "step": 735
892
+ },
893
+ {
894
+ "epoch": 0.9,
895
+ "learning_rate": 1.113376763290877e-06,
896
+ "loss": 0.0267,
897
+ "step": 740
898
+ },
899
+ {
900
+ "epoch": 0.91,
901
+ "learning_rate": 9.761178842107699e-07,
902
+ "loss": 0.0237,
903
+ "step": 745
904
+ },
905
+ {
906
+ "epoch": 0.92,
907
+ "learning_rate": 8.477175622387562e-07,
908
+ "loss": 0.0269,
909
+ "step": 750
910
+ },
911
+ {
912
+ "epoch": 0.92,
913
+ "learning_rate": 7.282231436604698e-07,
914
+ "loss": 0.0014,
915
+ "step": 755
916
+ },
917
+ {
918
+ "epoch": 0.93,
919
+ "learning_rate": 6.176786908021453e-07,
920
+ "loss": 0.0012,
921
+ "step": 760
922
+ },
923
+ {
924
+ "epoch": 0.93,
925
+ "learning_rate": 5.161249657830686e-07,
926
+ "loss": 0.0019,
927
+ "step": 765
928
+ },
929
+ {
930
+ "epoch": 0.94,
931
+ "learning_rate": 4.2359941548499037e-07,
932
+ "loss": 0.0036,
933
+ "step": 770
934
+ },
935
+ {
936
+ "epoch": 0.95,
937
+ "learning_rate": 3.4013615774395323e-07,
938
+ "loss": 0.0073,
939
+ "step": 775
940
+ },
941
+ {
942
+ "epoch": 0.95,
943
+ "learning_rate": 2.657659687697156e-07,
944
+ "loss": 0.0022,
945
+ "step": 780
946
+ },
947
+ {
948
+ "epoch": 0.96,
949
+ "learning_rate": 2.0051627179733247e-07,
950
+ "loss": 0.0021,
951
+ "step": 785
952
+ },
953
+ {
954
+ "epoch": 0.96,
955
+ "learning_rate": 1.444111269751164e-07,
956
+ "loss": 0.0007,
957
+ "step": 790
958
+ },
959
+ {
960
+ "epoch": 0.97,
961
+ "learning_rate": 9.747122249273156e-08,
962
+ "loss": 0.0016,
963
+ "step": 795
964
+ },
965
+ {
966
+ "epoch": 0.98,
967
+ "learning_rate": 5.971386695260706e-08,
968
+ "loss": 0.0051,
969
+ "step": 800
970
+ },
971
+ {
972
+ "epoch": 0.98,
973
+ "learning_rate": 3.1152982987595056e-08,
974
+ "loss": 0.0021,
975
+ "step": 805
976
+ },
977
+ {
978
+ "epoch": 0.99,
979
+ "learning_rate": 1.1799102127130202e-08,
980
+ "loss": 0.0054,
981
+ "step": 810
982
+ },
983
+ {
984
+ "epoch": 1.0,
985
+ "learning_rate": 1.6593609138415567e-09,
986
+ "loss": 0.0027,
987
+ "step": 815
988
+ },
989
+ {
990
+ "epoch": 1.0,
991
+ "step": 818,
992
+ "total_flos": 1.474472015387689e+17,
993
+ "train_loss": 0.04709457870986094,
994
+ "train_runtime": 3992.6154,
995
+ "train_samples_per_second": 6.561,
996
+ "train_steps_per_second": 0.205
997
+ }
998
+ ],
999
+ "logging_steps": 5,
1000
+ "max_steps": 818,
1001
+ "num_input_tokens_seen": 0,
1002
+ "num_train_epochs": 1,
1003
+ "save_steps": 1000,
1004
+ "total_flos": 1.474472015387689e+17,
1005
+ "train_batch_size": 8,
1006
+ "trial_name": null,
1007
+ "trial_params": null
1008
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84865721dbcc46921be500315b02abd9a9d24109c098df73457691b4d012b820
3
+ size 4920