nielsr HF Staff commited on
Commit
494c2c4
Β·
verified Β·
1 Parent(s): 96f13ec

Add pipeline tag and transformers library

Browse files

This PR adds:
- the `library_name` so it's easier to find the model.
- the `pipeline_tag` so the 'how to use' button shows up at the top right.

Files changed (1) hide show
  1. README.md +14 -8
README.md CHANGED
@@ -1,20 +1,20 @@
1
  ---
2
- license: apache-2.0
3
- language:
4
- - en
5
  base_model:
6
  - sfairXC/FsfairX-LLaMA3-RM-v0.1
 
 
 
7
  tags:
8
  - reward model
9
  - fine-grained
 
 
10
  ---
11
 
12
  # MDCureRM
13
 
14
-
15
  [πŸ“„ Paper](https://arxiv.org/pdf/2410.23463) | [πŸ€— HF Collection](https://huggingface.co/collections/yale-nlp/mdcure-6724914875e87f41e5445395) | [βš™οΈ GitHub Repo](https://github.com/yale-nlp/MDCure)
16
 
17
-
18
  ## Introduction
19
 
20
  **MDCure** is an effective and scalable procedure for generating high-quality multi-document (MD) instruction tuning data to improve MD capabilities of LLMs. Using MDCure, we construct a suite of MD instruction datasets complementary to collections such as [FLAN](https://github.com/google-research/FLAN) and fine-tune a variety of already instruction-tuned LLMs from the FlanT5, Qwen2, and LLAMA3.1 model families, up to 70B parameters in size. We additionally introduce **MDCureRM**, an evaluator model specifically designed for the MD setting to filter and select high-quality MD instruction data in a cost-effective, RM-as-a-judge fashion. Extensive evaluations on a wide range of MD and long-context benchmarks spanning various tasks show MDCure consistently improves performance over pre-trained baselines and over corresponding base models by up to 75.5%.
@@ -113,10 +113,16 @@ reward_weights = torch.tensor([1/9, 1/9, 1/9, 2/9, 2/9, 2/9], device="cuda")
113
  source_text_1 = ...
114
  source_text_2 = ...
115
  source_text_3 = ...
116
- context = f"{source_text_1}\n\n{source_text_2}\n\n{source_text_3}"
 
 
 
 
117
  instruction = "What happened in CHAMPAIGN regarding Lovie Smith and the 2019 defense improvements? Respond with 1-2 sentences."
118
 
119
- input_text = f"Instruction: {instruction}\n\n{context}"
 
 
120
  tokenized_input = tokenizer(
121
  input_text,
122
  return_tensors='pt',
@@ -141,7 +147,7 @@ Beyond MDCureRM, we open-source our best MDCure'd models at the following links:
141
  | **MDCure-Qwen2-1.5B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-1.5B-Instruct) | **Qwen2-1.5B-Instruct** fine-tuned with MDCure-72k |
142
  | **MDCure-Qwen2-7B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-7B-Instruct) | **Qwen2-7B-Instruct** fine-tuned with MDCure-72k |
143
  | **MDCure-LLAMA3.1-8B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-8B-Instruct) | **LLAMA3.1-8B-Instruct** fine-tuned with MDCure-72k |
144
- | **MDCure-LLAMA3.1-70B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-70B-Instruct) | **LLAMA3.1-70B-Instruct** fine-tuned with MDCure-72 |
145
 
146
  ## Citation
147
 
 
1
  ---
 
 
 
2
  base_model:
3
  - sfairXC/FsfairX-LLaMA3-RM-v0.1
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
  tags:
8
  - reward model
9
  - fine-grained
10
+ pipeline_tag: text-ranking
11
+ library_name: transformers
12
  ---
13
 
14
  # MDCureRM
15
 
 
16
  [πŸ“„ Paper](https://arxiv.org/pdf/2410.23463) | [πŸ€— HF Collection](https://huggingface.co/collections/yale-nlp/mdcure-6724914875e87f41e5445395) | [βš™οΈ GitHub Repo](https://github.com/yale-nlp/MDCure)
17
 
 
18
  ## Introduction
19
 
20
  **MDCure** is an effective and scalable procedure for generating high-quality multi-document (MD) instruction tuning data to improve MD capabilities of LLMs. Using MDCure, we construct a suite of MD instruction datasets complementary to collections such as [FLAN](https://github.com/google-research/FLAN) and fine-tune a variety of already instruction-tuned LLMs from the FlanT5, Qwen2, and LLAMA3.1 model families, up to 70B parameters in size. We additionally introduce **MDCureRM**, an evaluator model specifically designed for the MD setting to filter and select high-quality MD instruction data in a cost-effective, RM-as-a-judge fashion. Extensive evaluations on a wide range of MD and long-context benchmarks spanning various tasks show MDCure consistently improves performance over pre-trained baselines and over corresponding base models by up to 75.5%.
 
113
  source_text_1 = ...
114
  source_text_2 = ...
115
  source_text_3 = ...
116
+ context = f"{source_text_1}
117
+
118
+ {source_text_2}
119
+
120
+ {source_text_3}"
121
  instruction = "What happened in CHAMPAIGN regarding Lovie Smith and the 2019 defense improvements? Respond with 1-2 sentences."
122
 
123
+ input_text = f"Instruction: {instruction}
124
+
125
+ {context}"
126
  tokenized_input = tokenizer(
127
  input_text,
128
  return_tensors='pt',
 
147
  | **MDCure-Qwen2-1.5B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-1.5B-Instruct) | **Qwen2-1.5B-Instruct** fine-tuned with MDCure-72k |
148
  | **MDCure-Qwen2-7B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-7B-Instruct) | **Qwen2-7B-Instruct** fine-tuned with MDCure-72k |
149
  | **MDCure-LLAMA3.1-8B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-8B-Instruct) | **LLAMA3.1-8B-Instruct** fine-tuned with MDCure-72k |
150
+ | **MDCure-LLAMA3.1-70B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-70B-Instruct) | **LLAMA3.1-70B-Instruct** fine-tuned with MDCure-72k |
151
 
152
  ## Citation
153