diff --git "a/NumberPlate_detection_using_YOLOv8.ipynb" "b/NumberPlate_detection_using_YOLOv8.ipynb" --- "a/NumberPlate_detection_using_YOLOv8.ipynb" +++ "b/NumberPlate_detection_using_YOLOv8.ipynb" @@ -16,7 +16,14 @@ "id": "WvRyifGfTQQ2" }, "source": [ - "# instance segmentation using various different approach" + "# license plate object detection using YOLOv8" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### dataset : https://huggingface.co/datasets/keremberke/license-plate-object-detection\n" ] }, { @@ -27,150 +34,106 @@ "base_uri": "https://localhost:8080/" }, "id": "yVFdjWeRS8jh", - "outputId": "8c057c2b-39c5-4407-ee03-b9358fe17c0b" + "outputId": "6a9c0a99-5dc3-4705-aa8b-14ea3db5c04c" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: datasets in ./.venv/lib/python3.12/site-packages (3.2.0)\n", + "Collecting datasets\n", + " Downloading datasets-3.2.0-py3-none-any.whl.metadata (20 kB)\n", "Collecting ultralytics\n", " Downloading ultralytics-8.3.68-py3-none-any.whl.metadata (35 kB)\n", - "Requirement already satisfied: filelock in ./.venv/lib/python3.12/site-packages (from datasets) (3.16.1)\n", - "Requirement already satisfied: numpy>=1.17 in ./.venv/lib/python3.12/site-packages (from datasets) (2.2.1)\n", - "Requirement already satisfied: pyarrow>=15.0.0 in ./.venv/lib/python3.12/site-packages (from datasets) (18.1.0)\n", - "Requirement already satisfied: dill<0.3.9,>=0.3.0 in ./.venv/lib/python3.12/site-packages (from datasets) (0.3.8)\n", - "Requirement already satisfied: pandas in ./.venv/lib/python3.12/site-packages (from datasets) (2.2.3)\n", - "Requirement already satisfied: requests>=2.32.2 in ./.venv/lib/python3.12/site-packages (from datasets) (2.32.3)\n", - "Requirement already satisfied: tqdm>=4.66.3 in ./.venv/lib/python3.12/site-packages (from datasets) (4.67.1)\n", - "Requirement already satisfied: xxhash in ./.venv/lib/python3.12/site-packages (from datasets) (3.5.0)\n", - "Requirement already satisfied: multiprocess<0.70.17 in ./.venv/lib/python3.12/site-packages (from datasets) (0.70.16)\n", - "Requirement already satisfied: fsspec<=2024.9.0,>=2023.1.0 in ./.venv/lib/python3.12/site-packages (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets) (2024.9.0)\n", - "Requirement already satisfied: aiohttp in ./.venv/lib/python3.12/site-packages (from datasets) (3.11.11)\n", - "Requirement already satisfied: huggingface-hub>=0.23.0 in ./.venv/lib/python3.12/site-packages (from datasets) (0.27.1)\n", - "Requirement already satisfied: packaging in ./.venv/lib/python3.12/site-packages (from datasets) (24.2)\n", - "Requirement already satisfied: pyyaml>=5.1 in ./.venv/lib/python3.12/site-packages (from datasets) (6.0.2)\n", - "Requirement already satisfied: matplotlib>=3.3.0 in ./.venv/lib/python3.12/site-packages (from ultralytics) (3.10.0)\n", - "Collecting opencv-python>=4.6.0 (from ultralytics)\n", - " Downloading opencv_python-4.11.0.86-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB)\n", - "Requirement already satisfied: pillow>=7.1.2 in ./.venv/lib/python3.12/site-packages (from ultralytics) (11.1.0)\n", - "Requirement already satisfied: scipy>=1.4.1 in ./.venv/lib/python3.12/site-packages (from ultralytics) (1.15.0)\n", - "Collecting torch>=1.8.0 (from ultralytics)\n", - " Downloading torch-2.5.1-cp312-cp312-manylinux1_x86_64.whl.metadata (28 kB)\n", - "Collecting torchvision>=0.9.0 (from ultralytics)\n", - " Downloading torchvision-0.20.1-cp312-cp312-manylinux1_x86_64.whl.metadata (6.1 kB)\n", - "Requirement already satisfied: psutil in ./.venv/lib/python3.12/site-packages (from ultralytics) (6.1.1)\n", - "Collecting py-cpuinfo (from ultralytics)\n", - " Downloading py_cpuinfo-9.0.0-py3-none-any.whl.metadata (794 bytes)\n", - "Requirement already satisfied: seaborn>=0.11.0 in ./.venv/lib/python3.12/site-packages (from ultralytics) (0.13.2)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from datasets) (3.17.0)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from datasets) (1.26.4)\n", + "Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets) (17.0.0)\n", + "Collecting dill<0.3.9,>=0.3.0 (from datasets)\n", + " Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets) (2.2.2)\n", + "Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.11/dist-packages (from datasets) (2.32.3)\n", + "Requirement already satisfied: tqdm>=4.66.3 in /usr/local/lib/python3.11/dist-packages (from datasets) (4.67.1)\n", + "Collecting xxhash (from datasets)\n", + " Downloading xxhash-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n", + "Collecting multiprocess<0.70.17 (from datasets)\n", + " Downloading multiprocess-0.70.16-py311-none-any.whl.metadata (7.2 kB)\n", + "Collecting fsspec<=2024.9.0,>=2023.1.0 (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets)\n", + " Downloading fsspec-2024.9.0-py3-none-any.whl.metadata (11 kB)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.11/dist-packages (from datasets) (3.11.11)\n", + "Requirement already satisfied: huggingface-hub>=0.23.0 in /usr/local/lib/python3.11/dist-packages (from datasets) (0.27.1)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from datasets) (24.2)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from datasets) (6.0.2)\n", + "Requirement already satisfied: matplotlib>=3.3.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (3.10.0)\n", + "Requirement already satisfied: opencv-python>=4.6.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (4.10.0.84)\n", + "Requirement already satisfied: pillow>=7.1.2 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (11.1.0)\n", + "Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (1.13.1)\n", + "Requirement already satisfied: torch>=1.8.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (2.5.1+cu121)\n", + "Requirement already satisfied: torchvision>=0.9.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (0.20.1+cu121)\n", + "Requirement already satisfied: psutil in /usr/local/lib/python3.11/dist-packages (from ultralytics) (5.9.5)\n", + "Requirement already satisfied: py-cpuinfo in /usr/local/lib/python3.11/dist-packages (from ultralytics) (9.0.0)\n", + "Requirement already satisfied: seaborn>=0.11.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (0.13.2)\n", "Collecting ultralytics-thop>=2.0.0 (from ultralytics)\n", " Downloading ultralytics_thop-2.0.14-py3-none-any.whl.metadata (9.4 kB)\n", - "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (2.4.4)\n", - "Requirement already satisfied: aiosignal>=1.1.2 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (1.3.2)\n", - "Requirement already satisfied: attrs>=17.3.0 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (24.3.0)\n", - "Requirement already satisfied: frozenlist>=1.1.1 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (1.5.0)\n", - "Requirement already satisfied: multidict<7.0,>=4.5 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (6.1.0)\n", - "Requirement already satisfied: propcache>=0.2.0 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (0.2.1)\n", - "Requirement already satisfied: yarl<2.0,>=1.17.0 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (1.18.3)\n", - "Requirement already satisfied: typing-extensions>=3.7.4.3 in ./.venv/lib/python3.12/site-packages (from huggingface-hub>=0.23.0->datasets) (4.12.2)\n", - "Requirement already satisfied: contourpy>=1.0.1 in ./.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (1.3.1)\n", - "Requirement already satisfied: cycler>=0.10 in ./.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in ./.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (4.55.3)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in ./.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (1.4.8)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in ./.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (3.2.1)\n", - "Requirement already satisfied: python-dateutil>=2.7 in ./.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0.post0)\n", - "Requirement already satisfied: pytz>=2020.1 in ./.venv/lib/python3.12/site-packages (from pandas->datasets) (2024.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in ./.venv/lib/python3.12/site-packages (from pandas->datasets) (2024.2)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in ./.venv/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (3.4.1)\n", - "Requirement already satisfied: idna<4,>=2.5 in ./.venv/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (3.10)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in ./.venv/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (2.3.0)\n", - "Requirement already satisfied: certifi>=2017.4.17 in ./.venv/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (2024.12.14)\n", - "Collecting networkx (from torch>=1.8.0->ultralytics)\n", - " Downloading networkx-3.4.2-py3-none-any.whl.metadata (6.3 kB)\n", - "Collecting jinja2 (from torch>=1.8.0->ultralytics)\n", - " Downloading jinja2-3.1.5-py3-none-any.whl.metadata (2.6 kB)\n", - "Collecting nvidia-cuda-nvrtc-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n", - " Downloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", - "Collecting nvidia-cuda-runtime-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n", - " Downloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", - "Collecting nvidia-cuda-cupti-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n", - " Downloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", - "Collecting nvidia-cudnn-cu12==9.1.0.70 (from torch>=1.8.0->ultralytics)\n", - " Downloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", - "Collecting nvidia-cublas-cu12==12.4.5.8 (from torch>=1.8.0->ultralytics)\n", - " Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", - "Collecting nvidia-cufft-cu12==11.2.1.3 (from torch>=1.8.0->ultralytics)\n", - " Downloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", - "Collecting nvidia-curand-cu12==10.3.5.147 (from torch>=1.8.0->ultralytics)\n", - " Downloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", - "Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch>=1.8.0->ultralytics)\n", - " Downloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", - "Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch>=1.8.0->ultralytics)\n", - " Downloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", - "Collecting nvidia-nccl-cu12==2.21.5 (from torch>=1.8.0->ultralytics)\n", - " Downloading nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl.metadata (1.8 kB)\n", - "Collecting nvidia-nvtx-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n", - " Downloading nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.7 kB)\n", - "Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n", - " Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", - "Collecting triton==3.1.0 (from torch>=1.8.0->ultralytics)\n", - " Downloading triton-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.3 kB)\n", - "Collecting setuptools (from torch>=1.8.0->ultralytics)\n", - " Using cached setuptools-75.8.0-py3-none-any.whl.metadata (6.7 kB)\n", - "Collecting sympy==1.13.1 (from torch>=1.8.0->ultralytics)\n", - " Downloading sympy-1.13.1-py3-none-any.whl.metadata (12 kB)\n", - "Collecting mpmath<1.4,>=1.1.0 (from sympy==1.13.1->torch>=1.8.0->ultralytics)\n", - " Downloading mpmath-1.3.0-py3-none-any.whl.metadata (8.6 kB)\n", - "Requirement already satisfied: six>=1.5 in ./.venv/lib/python3.12/site-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.17.0)\n", - "Collecting MarkupSafe>=2.0 (from jinja2->torch>=1.8.0->ultralytics)\n", - " Downloading MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.0 kB)\n", - "Downloading ultralytics-8.3.68-py3-none-any.whl (913 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m913.6/913.6 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading opencv_python-4.11.0.86-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (63.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m63.0/63.0 MB\u001b[0m \u001b[31m11.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading torch-2.5.1-cp312-cp312-manylinux1_x86_64.whl (906.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━��━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m906.4/906.4 MB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:02\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m10.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:02\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m13.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl (188.7 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m188.7/188.7 MB\u001b[0m \u001b[31m11.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (99 kB)\n", - "Downloading sympy-1.13.1-py3-none-any.whl (6.2 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.2/6.2 MB\u001b[0m \u001b[31m11.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", - "\u001b[?25hDownloading triton-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (209.6 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m209.6/209.6 MB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading torchvision-0.20.1-cp312-cp312-manylinux1_x86_64.whl (7.2 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:01\u001b[0m\n", + "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (2.4.4)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (1.3.2)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (24.3.0)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (1.5.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (6.1.0)\n", + "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (0.2.1)\n", + "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (1.18.3)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.23.0->datasets) (4.12.2)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (4.55.5)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.4.8)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (3.2.1)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets) (2025.1)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets) (3.4.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets) (2.3.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets) (2024.12.14)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (3.4.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (3.1.5)\n", + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.1.105)\n", + "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (9.1.0.70)\n", + "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.1.3.1)\n", + "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (11.0.2.54)\n", + "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (10.3.2.106)\n", + "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (11.4.5.107)\n", + "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.1.0.106)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (2.21.5)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.1.105)\n", + "Requirement already satisfied: triton==3.1.0 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (3.1.0)\n", + "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (1.13.1)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.11/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.8.0->ultralytics) (12.6.85)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=1.8.0->ultralytics) (1.3.0)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.17.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=1.8.0->ultralytics) (3.0.2)\n", + "Downloading datasets-3.2.0-py3-none-any.whl (480 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m9.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading ultralytics-8.3.68-py3-none-any.whl (913 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m913.6/913.6 kB\u001b[0m \u001b[31m34.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading dill-0.3.8-py3-none-any.whl (116 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m9.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading fsspec-2024.9.0-py3-none-any.whl (179 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m14.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading multiprocess-0.70.16-py311-none-any.whl (143 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.5/143.5 kB\u001b[0m \u001b[31m11.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading ultralytics_thop-2.0.14-py3-none-any.whl (26 kB)\n", - "Downloading py_cpuinfo-9.0.0-py3-none-any.whl (22 kB)\n", - "Downloading jinja2-3.1.5-py3-none-any.whl (134 kB)\n", - "Downloading networkx-3.4.2-py3-none-any.whl (1.7 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mta \u001b[36m0:00:01\u001b[0m\n", - "\u001b[?25hUsing cached setuptools-75.8.0-py3-none-any.whl (1.2 MB)\n", - "Downloading MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (23 kB)\n", - "Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.2/536.2 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hInstalling collected packages: py-cpuinfo, mpmath, triton, sympy, setuptools, opencv-python, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, networkx, MarkupSafe, nvidia-cusparse-cu12, nvidia-cudnn-cu12, jinja2, nvidia-cusolver-cu12, torch, ultralytics-thop, torchvision, ultralytics\n", - "Successfully installed MarkupSafe-3.0.2 jinja2-3.1.5 mpmath-1.3.0 networkx-3.4.2 nvidia-cublas-cu12-12.4.5.8 nvidia-cuda-cupti-cu12-12.4.127 nvidia-cuda-nvrtc-cu12-12.4.127 nvidia-cuda-runtime-cu12-12.4.127 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.2.1.3 nvidia-curand-cu12-10.3.5.147 nvidia-cusolver-cu12-11.6.1.9 nvidia-cusparse-cu12-12.3.1.170 nvidia-nccl-cu12-2.21.5 nvidia-nvjitlink-cu12-12.4.127 nvidia-nvtx-cu12-12.4.127 opencv-python-4.11.0.86 py-cpuinfo-9.0.0 setuptools-75.8.0 sympy-1.13.1 torch-2.5.1 torchvision-0.20.1 triton-3.1.0 ultralytics-8.3.68 ultralytics-thop-2.0.14\n" + "Downloading xxhash-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.8/194.8 kB\u001b[0m \u001b[31m15.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: xxhash, fsspec, dill, multiprocess, ultralytics-thop, datasets, ultralytics\n", + " Attempting uninstall: fsspec\n", + " Found existing installation: fsspec 2024.10.0\n", + " Uninstalling fsspec-2024.10.0:\n", + " Successfully uninstalled fsspec-2024.10.0\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed datasets-3.2.0 dill-0.3.8 fsspec-2024.9.0 multiprocess-0.70.16 ultralytics-8.3.68 ultralytics-thop-2.0.14 xxhash-3.5.0\n" ] } ], @@ -184,112 +147,225 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 430, + "height": 402, "referenced_widgets": [ - "f110bf4cec204815b518dcd7262f4110", - "6c6ee1eec7764ab88d97dcdd3b823411", - "4a57bf2d79874b4f9cf78eb604556f67", - "294b9c9a60664948a694b94d65a6e3ee", - "d7fd1c9f3e2a4da6958249e8f146d887", - "d237c86e9087450bbba6b8bd48485dc6", - "bb59949fafd94785bae45321e0711837", - "759fd1dedf694f57b1bd23309e7749d8", - "4fa8ea4ec26d4d60983374fa44a0df76", - "8ab46df36bc0484188b7dd31d7e1b069", - "b0ca058cab35428e9b845bd5dfdefdc7", - "bb216713afad4ec7b55e9382498e8a93", - "3ae35a6c4fa048b495ebe5a477de961b", - "5fd9fbac8ae14bcc9c3becb17980589c", - "2ebd4788f82d4d6f89cf08b89dc071bf", - "04b9d680e34c4ff89552b093f68b6e89", - "f765b3535f8d48f987ff7f0d1ed0d27e", - "02ef3a2d28c84af98e466e399a42f8a4", - "646934b1a9c5438eba158d47ec8e804f", - "347eb74722f74db7952ceb378885b5a4", - "353da333b46a4487800c2243e4305153", - "c6dc7afc53094fb8a630dd9ca41e6c48", - "5fe19a732e96458d9da6c04951f65792", - "98f1dfdadd5440afa23fa793c5982b29", - "14fe10b7a9a24d8799aa1c6e044de554", - "80598cce422d4892a0aded2f1b78ec7e", - "85e1150e38e14575acec852e11e5ea43", - "7ddcffa3be8349dea54077b2abeee3ad", - "b4806effde704aeead948920debebcdd", - "6a7e26dcba854bca8504a57aa17e391c", - "a3119fce6b6942f5b01e7d3cb5f0af27", - "63755d6d09744efcbc63297372e1d679", - "a333e2d5bb284c5087f86ed4655268b9", - "057301b8a5694d14bc3fcb71d0c29eaf", - "59facccfa2f44d87a5e14d42b2c5b112", - "48cf627fbb9243c7b52a4b9f669b978c", - "254ed912e97c42e589c81320bdb9c41f", - "c3b871e061134a5f9561c8d473a46964", - "d8e237beb6114ceeb81d216c2b920570", - "e3f6a23964704488bac6372cb5e94bc3", - "fdababc887cc4ad99bcc5393b6873a81", - "3967f6d26e3c4a27b5a9b073b3cfa819", - "9390dfa535a443b789930a452ebc334a", - "13eb3bf7aa4c456d8ecabf7b1463be92", - "0728467c6fc04a8bb5ef2abb6acca3d3", - "ea2e17d8f56f4e918ef714cb3e70c840", - "46123093d57f45af930f396d5147c91b", - "3fa50ca858394748b2394a5ff78ae32a", - "8ab0ad4afb054b98b39cbf4a05379d14", - "1ea611c39ee74ede859f99a672709e15", - "3982e7688d694e4e8e209cb166bf87c2", - "f0fdd04aa17741988080beb831fc6882", - "bb05dfeca514492681181ba56a51225f", - "0c4018c823ff47de9e365fbc83a1c22f", - "1fc97d1dd8a44c6ea5eec0008b9d7747", - "8b2de2230ec3476b90d6803764c0365a", - "442217a94c7642588b62016d06d6daab", - "db6dfa339ecb4b06afc9a4b5b8d57c83", - "7457284827654633b7abb74a98428ecf", - "fceb8ef4dff9473a854d223958f0770f", - "b13dffe8b9a445a4954f61b5aab10adc", - "5280eb3992bb4ddd87ab4122ec6f89a0", - "c958344979d448c9b452c7ef99d0da1d", - "75d2c6bf23b0484086d5020a6d6c3929", - "d7e0bebda4854874ae4288395d554412", - "03b20ea8d48048fa9ec11862c2855386", - "053f3073855549259ec5e3ea7a2c3863", - "bd39751fd17043ec836dc677d0b34031", - "455cf66e4c024f79b8ec35b1705cfa2e", - "508574e083e74f7eb2cf14657a8bce47", - "1273af0e3b084d0488ce9c34fb25f805", - "e1fa41a7055c4595a0334b08a80c0f77", - "1348742c59ba4a00aed3f1c10fc31fb8", - "72ce547f43b844319e3a4e0ec71e5131", - "9e9bc0853164443ca02800c42bc7eed6", - "ad7fdb6be4624917b0c4e93574881a31", - "458552538dc749178ea12de9e16d20e0", - "7d3fd3314d9d4d1e90d8820a79c9a954", - "c70e52edfe3e4222b51b7542424a4c37", - "f39c430c793943db88fa8e1ea26681d9", - "414adc5bc471472ab50a847244ea1151", - "fbf960e037324895801507bb74b6f401", - "5e57bf8b48af4ce1b9ddf7f95359aec5", - "a80cd47fa08940e8a4e8b41a4ac689cf", - "0ee94c205ab8405ebc1fe535a51823d9", - "60a3b53107214e319bc9f72f128d7e9a", - "fd4ee64461ab4625b88ce785d089343d", - "4924c3c2633a422390b2a8355d0f21e3" + "045c5a90a4e44c62bff82074ea0a4206", + "b79e766f1f8e4542b3570ab748546a10", + "af1f4069ccaf4bb3a827598a2766b756", + "9381a9a338a9490d82ebabca0381a53e", + "425e7bd48ff4460383de2ab0eb38967e", + "743d23f277814df7acf58e99769fa995", + "a60a905fca554d6dbc8e0bc0d7ebed0b", + "7d66f81978ea48e3aba3abe4bc34a362", + "51f0663f1b79496cbe8ce3d38d1ef5a4", + "7d5ab77c50b84eb38e3a2c22a92ca88e", + "eb91f17764f2478cb897e741eeae58ca", + "8a8a814623b1471f8d9b3c49c72592ef", + "e3321090379145e180e46744ce050c89", + "0e351ff0b22d4aada497b0ca28c176c0", + "58f60d66a8a1475c9b9c00c2e5ee23b9", + "e6c66c0d935d4d978e8f80d3186688dd", + "281b7dcb7f9c49dd9b0f37d08a4c7128", + "5efea1066ce24da3a99aba14dfce9783", + "2d51a4cc03804634a091282f126af34e", + "3bda2f93d975401fa19f19bdfa50cbc9", + "f42284f2326542f8bd723d612f9d1958", + "cf76ed363c8c4803adfdd93ad76eaf74", + "f735de1ab77140dbb4c72207b8ebb514", + "c9f48974fd874e5c925f631fbbfd5237", + "43f8f78aeae04edda400b863b2c6083b", + "f6abb798974d491c8e0d82f2b101d55e", + "fe34a93384d04276ab176dbb51276a31", + "a945dd404eeb4b418051e33aa3985a7e", + "9b8d306074524c4b8f3cadaa569035ca", + "ce3185a77edd4e54b5246f295b95f135", + "224cc58849bc42f2b5a883e06616a3da", + "b9729d44ca98490ba230eb4c60444ea5", + "5ad4797273bc411489a835b267c999be", + "78ace055e9fb4d4f893f636f81c37c58", + "d39b084356424c76a031b3353f406f92", + "4e36f85990a04502a5781f5d8c2bfb71", + "52125a8e46314bd7aeb8455db82d9f0b", + "eed222dabb214d3d8c53e74900a1cd5e", + "a802f9c6e8444c11b1bbef4c0cb3f1a3", + "d125618b3bb74b638ee02d7871cc82b9", + "404f2f2822bb4d1fa0b2316def55f9c9", + "2ee4059e62b5489b8ec887bf2ea99430", + "247ca90330cf4f5eb6e19556ad4a1e8c", + "7be0a5449c2b4d63b12b72afbb395dc4", + "9b5bebb7d4d44af4b466e152520f46b0", + "196b240165764c24a538011e5e621fe8", + "031ced2c6b694a3b8776505f310cce41", + "dbcbc21e84c2408ebae6fd497c82bd9f", + "0797084f7647413ab9a504b6593c0a32", + "148b98c041434feeb0317d1011f477f3", + "7ab18382ff57418e807e29e7eb29b5f9", + "4a029944d7af46edbe012b98304991c7", + "206ed7f680fa4221b5aab3e43f178a2b", + "17e2fbaf98964eb9bf1b757d8b38cc98", + "9c89394e72e64c1e8d66ac67b5b97f00", + "031ad2790ce14930a576fbb5a70aa6ac", + "519f5224463440b3bc68e29278358fb8", + "a8411f4b2e144c4c9cbb02333ecc9cf6", + "1b3e894a8e4940189a407fca1f2d9928", + "6be43682c0b34f79b96f491140b3ca08", + "13dcd001c23b48deb862e0e51513e2f7", + "ae4cc09971e44debaec05ae39e9930a3", + "cc6bca626dbf4b1a8476616781d37e91", + "0c994560365a4a34b70e924a74a735fc", + "491b7bdb3768406c85fe5116b72720ad", + "c90495736064439d951a9e3a99d1c69b", + "95e2c81b520742bbb26480a87d26daaa", + "51a57359a0f948989a236681e7e0288c", + "ef900119072b40439fc89c63a939e766", + "1d83fe7833e64b3a9ff816b9a72f30ab", + "468d0430026b4070b3897267fa993594", + "f3156888b2644b9c88284f5fbe2f6883", + "3ab0bcbd68294e99b34faf3fc5f02b53", + "ee442a157c72446f9db8359ca590b202", + "ea096a2828f94674979b9c77fc1372b0", + "0834f8a046f64c6e8e7f90a0dc5dce98", + "a486f99686834a7c8ca1819b93d8a017", + "6e8a5580a981464e842c56ee88fdc29d", + "1d5bd353a7764b078902a3626f4db345", + "99ffb36c5c4f47769e1661bfcee86808", + "efd09f30af42475dad4a8d14423d9f57", + "c9cc9da8696f4f86b791d515e3f94af1", + "b6f6ad3a8c204a08b1bd04539938f190", + "f0b5371a218449ac8a09a750d985930b", + "0ba67d6a1251492ab1c52bd32fff16cf", + "a7f348ab9b4840529cfcb7baa8d5eba0", + "71e2028d2470473286b6ddc41e2a9300", + "7697bd1df7a6462284177dfa8ee4d24c" ] }, "id": "jnJT1oEGVV6d", - "outputId": "1c18d27b-310f-4c45-b299-f2839a2922c8" + "outputId": "2f509f0a-4f9c-4c05-855f-4caa059f23b6" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/home/xd/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n", - "Generating train split: 100%|██████████| 6176/6176 [00:02<00:00, 2845.51 examples/s]\n", - "Generating validation split: 100%|██████████| 1765/1765 [00:00<00:00, 24120.12 examples/s]\n", - "Generating test split: 100%|██████████| 882/882 [00:00<00:00, 21573.47 examples/s]\n" + "/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n" ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "045c5a90a4e44c62bff82074ea0a4206", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "README.md: 0%| | 0.00/1.88k [00:00\n", + "\n", + "
\n", + "
\n", "\n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n" ], "text/plain": [ " image_id image width height \\\n", @@ -463,7 +755,11 @@ "cell_type": "code", "execution_count": 5, "metadata": { - "id": "5gxgevPxZU26" + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5gxgevPxZU26", + "outputId": "58a58ccb-985c-4098-ab72-a9ac4b57e566" }, "outputs": [ { @@ -477,7 +773,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 6.25M/6.25M [00:00<00:00, 56.6MB/s]\n" + "100%|██████████| 6.25M/6.25M [00:00<00:00, 76.2MB/s]\n" ] } ], @@ -494,7 +790,7 @@ "base_uri": "https://localhost:8080/" }, "id": "SORMPYhvZb4Z", - "outputId": "1fb3982a-7f0f-4ed6-986a-cff7ea88117f" + "outputId": "365feb67-da37-4a29-afe1-3155667a1bbe" }, "outputs": [ { @@ -513,6198 +809,11 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "3Hff3i23bPE4", - "outputId": "6f2096e1-8598-4af0-8116-134dc231bdcc" + "id": "3Hff3i23bPE4" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n", - "0\n" - ] - } - ], + "outputs": [], "source": [ "# Output directories\n", "image_dir = 'dataset/images/train'\n", @@ -6746,7 +855,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 8, "metadata": { "id": "f_J9xp_hpenL" }, @@ -6793,22 +902,21 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 11, "metadata": { "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 + "base_uri": "https://localhost:8080/" }, "id": "UpfV5l2Dom3t", - "outputId": "1450c3fe-04d1-4708-9fe8-ccd22dda3f05" + "outputId": "78e0a3c8-34cc-4f92-f31d-62b4b06a132a" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Ultralytics 8.3.68 🚀 Python-3.12.8 torch-2.5.1+cu124 CUDA:0 (NVIDIA GeForce 920MX, 2003MiB)\n", - "\u001b[34m\u001b[1mengine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8n.pt, data=dataset.yaml, epochs=100, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train5, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=/home/xd/Documents/machine_learning/ML_Notebooks/runs/detect/train5\n", + "Ultralytics 8.3.68 🚀 Python-3.11.11 torch-2.5.1+cu121 CUDA:0 (NVIDIA A100-SXM4-40GB, 40514MiB)\n", + "\u001b[34m\u001b[1mengine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8n.pt, data=dataset.yaml, epochs=75, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train3, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train3\n", "\n", " from n params module arguments \n", " 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] \n", @@ -6837,6 +945,7 @@ "Model summary: 225 layers, 3,011,043 parameters, 3,011,027 gradients, 8.2 GFLOPs\n", "\n", "Transferred 355/355 items from pretrained weights\n", + "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/detect/train3', view at http://localhost:6006/\n", "Freezing layer 'model.22.dfl.conv.weight'\n", "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks...\n", "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n" @@ -6846,35 +955,36 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /home/xd/Documents/machine_learning/ML_Notebooks/dataset/labels/train.cache... 6176 images, 0 backgrounds, 0 corrupt: 100%|██████████| 6176/6176 [00:00 2\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mdataset.yaml\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m100\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mimgsz\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m640\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m16\u001b[39;49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/ultralytics/engine/model.py:806\u001b[0m, in \u001b[0;36mModel.train\u001b[0;34m(self, trainer, **kwargs)\u001b[0m\n\u001b[1;32m 803\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer\u001b[38;5;241m.\u001b[39mmodel\n\u001b[1;32m 805\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer\u001b[38;5;241m.\u001b[39mhub_session \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msession \u001b[38;5;66;03m# attach optional HUB session\u001b[39;00m\n\u001b[0;32m--> 806\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 807\u001b[0m \u001b[38;5;66;03m# Update model and cfg after training\u001b[39;00m\n\u001b[1;32m 808\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m RANK \u001b[38;5;129;01min\u001b[39;00m {\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m0\u001b[39m}:\n", - "File \u001b[0;32m~/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/ultralytics/engine/trainer.py:207\u001b[0m, in \u001b[0;36mBaseTrainer.train\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 204\u001b[0m ddp_cleanup(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28mstr\u001b[39m(file))\n\u001b[1;32m 206\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 207\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_train\u001b[49m\u001b[43m(\u001b[49m\u001b[43mworld_size\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/ultralytics/engine/trainer.py:388\u001b[0m, in \u001b[0;36mBaseTrainer._do_train\u001b[0;34m(self, world_size)\u001b[0m\n\u001b[1;32m 383\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtloss \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 384\u001b[0m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtloss \u001b[38;5;241m*\u001b[39m i \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloss_items) \u001b[38;5;241m/\u001b[39m (i \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtloss \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloss_items\n\u001b[1;32m 385\u001b[0m )\n\u001b[1;32m 387\u001b[0m \u001b[38;5;66;03m# Backward\u001b[39;00m\n\u001b[0;32m--> 388\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mscaler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mscale\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mloss\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 390\u001b[0m \u001b[38;5;66;03m# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html\u001b[39;00m\n\u001b[1;32m 391\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ni \u001b[38;5;241m-\u001b[39m last_opt_step \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maccumulate:\n", - "File \u001b[0;32m~/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/torch/_tensor.py:581\u001b[0m, in \u001b[0;36mTensor.backward\u001b[0;34m(self, gradient, retain_graph, create_graph, inputs)\u001b[0m\n\u001b[1;32m 571\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m has_torch_function_unary(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 572\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m handle_torch_function(\n\u001b[1;32m 573\u001b[0m Tensor\u001b[38;5;241m.\u001b[39mbackward,\n\u001b[1;32m 574\u001b[0m (\u001b[38;5;28mself\u001b[39m,),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 579\u001b[0m inputs\u001b[38;5;241m=\u001b[39minputs,\n\u001b[1;32m 580\u001b[0m )\n\u001b[0;32m--> 581\u001b[0m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mautograd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 582\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\n\u001b[1;32m 583\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/torch/autograd/__init__.py:347\u001b[0m, in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[0m\n\u001b[1;32m 342\u001b[0m retain_graph \u001b[38;5;241m=\u001b[39m create_graph\n\u001b[1;32m 344\u001b[0m \u001b[38;5;66;03m# The reason we repeat the same comment below is that\u001b[39;00m\n\u001b[1;32m 345\u001b[0m \u001b[38;5;66;03m# some Python versions print out the first line of a multi-line function\u001b[39;00m\n\u001b[1;32m 346\u001b[0m \u001b[38;5;66;03m# calls in the traceback and some print out the last line\u001b[39;00m\n\u001b[0;32m--> 347\u001b[0m \u001b[43m_engine_run_backward\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 348\u001b[0m \u001b[43m \u001b[49m\u001b[43mtensors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 349\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrad_tensors_\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 350\u001b[0m \u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 351\u001b[0m \u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 352\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 353\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_unreachable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 354\u001b[0m \u001b[43m \u001b[49m\u001b[43maccumulate_grad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 355\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/torch/autograd/graph.py:825\u001b[0m, in \u001b[0;36m_engine_run_backward\u001b[0;34m(t_outputs, *args, **kwargs)\u001b[0m\n\u001b[1;32m 823\u001b[0m unregister_hooks \u001b[38;5;241m=\u001b[39m _register_logging_hooks_on_whole_graph(t_outputs)\n\u001b[1;32m 824\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 825\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mVariable\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_execution_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_backward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Calls into the C++ engine to run the backward pass\u001b[39;49;00m\n\u001b[1;32m 826\u001b[0m \u001b[43m \u001b[49m\u001b[43mt_outputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 827\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# Calls into the C++ engine to run the backward pass\u001b[39;00m\n\u001b[1;32m 828\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 829\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m attach_logging_hooks:\n", - "\u001b[0;31mOutOfMemoryError\u001b[0m: CUDA out of memory. Tried to allocate 34.00 MiB. GPU 0 has a total capacity of 1.96 GiB of which 33.19 MiB is free. Including non-PyTorch memory, this process has 1.91 GiB memory in use. Of the allocated memory 1.79 GiB is allocated by PyTorch, and 65.71 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)" + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.975 0.95 0.975 0.641\n" ] - } - ], - "source": [ - "# Train the model using the YAML file\n", - "results = model.train(data=\"dataset.yaml\", epochs=100, imgsz=640, batch=16)" - ] - } - ], - "metadata": { - "colab": { - "authorship_tag": "ABX9TyPgZ3/nPwQl1eSxqGKyKzEu", - "include_colab_link": true, - "provenance": [] - }, - "kernelspec": { - "display_name": ".venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.8" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "02ef3a2d28c84af98e466e399a42f8a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } }, - "03b20ea8d48048fa9ec11862c2855386": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] }, - "04b9d680e34c4ff89552b093f68b6e89": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] }, - "053f3073855549259ec5e3ea7a2c3863": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bd39751fd17043ec836dc677d0b34031", - "IPY_MODEL_455cf66e4c024f79b8ec35b1705cfa2e", - "IPY_MODEL_508574e083e74f7eb2cf14657a8bce47" - ], - "layout": "IPY_MODEL_1273af0e3b084d0488ce9c34fb25f805" - } + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 2/75 4.01G 1.186 0.6815 1.092 28 640: 100%|██████████| 386/386 [00:36<00:00, 10.45it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.84it/s]" + ] }, - "057301b8a5694d14bc3fcb71d0c29eaf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.913 0.932 0.962 0.649\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 3/75 4.01G 1.206 0.6668 1.097 31 640: 100%|██████████| 386/386 [00:35<00:00, 10.85it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.00it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.955 0.952 0.979 0.668\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 4/75 4.01G 1.196 0.6361 1.095 32 640: 100%|██████████| 386/386 [00:35<00:00, 11.01it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.12it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.974 0.959 0.981 0.684\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 5/75 4.01G 1.189 0.6285 1.099 30 640: 100%|██████████| 386/386 [00:34<00:00, 11.05it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.06it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.971 0.954 0.981 0.68\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 6/75 4.01G 1.161 0.6001 1.081 25 640: 100%|██████████| 386/386 [00:35<00:00, 11.03it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.05it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.974 0.969 0.989 0.689\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 7/75 4.01G 1.145 0.5798 1.073 24 640: 100%|██████████| 386/386 [00:35<00:00, 10.88it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.14it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.974 0.967 0.989 0.691\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 8/75 4.01G 1.147 0.5732 1.073 32 640: 100%|██████████| 386/386 [00:35<00:00, 10.98it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.968 0.967 0.987 0.689\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 9/75 4.01G 1.126 0.5606 1.068 24 640: 100%|██████████| 386/386 [00:34<00:00, 11.04it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.09it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.975 0.961 0.983 0.694\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 10/75 4.01G 1.119 0.5514 1.062 28 640: 100%|██████████| 386/386 [00:34<00:00, 11.05it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.71it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.972 0.955 0.985 0.697\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 11/75 4.01G 1.124 0.5437 1.063 29 640: 100%|██████████| 386/386 [00:34<00:00, 11.04it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.03it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.973 0.967 0.988 0.69\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 12/75 4.01G 1.124 0.5377 1.062 28 640: 100%|██████████| 386/386 [00:35<00:00, 10.92it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.983 0.968 0.985 0.702\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 13/75 4.01G 1.112 0.5336 1.061 42 640: 100%|██████████| 386/386 [00:35<00:00, 10.96it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.969 0.972 0.988 0.692\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 14/75 4.01G 1.109 0.5251 1.051 27 640: 100%|██████████| 386/386 [00:34<00:00, 11.10it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.81it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.979 0.968 0.987 0.71\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 15/75 4.01G 1.109 0.5195 1.056 34 640: 100%|██████████| 386/386 [00:34<00:00, 11.09it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.32it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.977 0.969 0.988 0.717\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 16/75 4.01G 1.099 0.5134 1.055 28 640: 100%|██████████| 386/386 [00:34<00:00, 11.05it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.05it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.982 0.967 0.988 0.705\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 17/75 4.01G 1.095 0.5061 1.055 31 640: 100%|██████████| 386/386 [00:34<00:00, 11.04it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.03it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.975 0.973 0.989 0.71\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 18/75 4.01G 1.092 0.5071 1.053 30 640: 100%|██████████| 386/386 [00:35<00:00, 11.02it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.84it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.979 0.966 0.985 0.707\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 19/75 4.01G 1.081 0.5001 1.048 31 640: 100%|██████████| 386/386 [00:35<00:00, 10.80it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.17it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.973 0.98 0.987 0.701\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 20/75 4.01G 1.073 0.4922 1.045 27 640: 100%|██████████| 386/386 [00:34<00:00, 11.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.84it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.982 0.97 0.988 0.709\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 21/75 4.01G 1.084 0.4985 1.047 23 640: 100%|██████████| 386/386 [00:35<00:00, 10.95it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.09it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.977 0.968 0.99 0.72\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 22/75 4.01G 1.064 0.4892 1.037 33 640: 100%|██████████| 386/386 [00:35<00:00, 10.94it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.87it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.972 0.973 0.99 0.704\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 23/75 4.01G 1.078 0.4916 1.041 34 640: 100%|██████████| 386/386 [00:35<00:00, 10.98it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.24it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.979 0.971 0.99 0.725\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 24/75 4.01G 1.062 0.4822 1.037 27 640: 100%|██████████| 386/386 [00:35<00:00, 10.93it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.81it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.977 0.973 0.989 0.719\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 25/75 4.01G 1.07 0.4853 1.041 43 640: 100%|██████████| 386/386 [00:35<00:00, 10.93it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.15it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.975 0.976 0.99 0.72\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 26/75 4.01G 1.061 0.4755 1.032 36 640: 100%|██████████| 386/386 [00:35<00:00, 10.96it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.92it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.975 0.978 0.991 0.727\n", + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 27/75 4.01G 1.059 0.4759 1.038 29 640: 100%|██████████| 386/386 [00:35<00:00, 11.02it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.04it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.981 0.974 0.991 0.726\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 28/75 4.01G 1.058 0.4687 1.036 22 640: 100%|██████████| 386/386 [00:35<00:00, 10.97it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.977 0.973 0.988 0.718\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 29/75 4.01G 1.055 0.4652 1.032 26 640: 100%|██████████| 386/386 [00:35<00:00, 10.93it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.982 0.974 0.99 0.725\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 30/75 4.01G 1.05 0.462 1.034 28 640: 100%|██████████| 386/386 [00:35<00:00, 10.80it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.984 0.976 0.992 0.725\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 31/75 4.01G 1.038 0.4587 1.033 22 640: 100%|██████████| 386/386 [00:35<00:00, 11.02it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.00it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.974 0.981 0.99 0.721\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 32/75 4.01G 1.043 0.4582 1.03 28 640: 100%|██████████| 386/386 [00:35<00:00, 11.02it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.11it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.977 0.973 0.991 0.722\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 33/75 4.01G 1.041 0.4539 1.022 30 640: 100%|██████████| 386/386 [00:35<00:00, 10.99it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.98it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.977 0.979 0.992 0.731\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 34/75 4.01G 1.044 0.4597 1.026 25 640: 100%|██████████| 386/386 [00:35<00:00, 10.93it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.20it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.978 0.976 0.992 0.729\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 35/75 4.01G 1.028 0.4473 1.025 35 640: 100%|██████████| 386/386 [00:35<00:00, 11.01it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.98it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.982 0.976 0.993 0.73\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 36/75 4.01G 1.034 0.4504 1.028 30 640: 100%|██████████| 386/386 [00:35<00:00, 10.86it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.11it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.983 0.975 0.989 0.725\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 37/75 4.01G 1.024 0.4418 1.024 27 640: 100%|██████████| 386/386 [00:35<00:00, 10.94it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.80it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.983 0.972 0.991 0.727\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 38/75 4.01G 1.018 0.4412 1.017 35 640: 100%|██████████| 386/386 [00:35<00:00, 10.98it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.06it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.979 0.976 0.992 0.724\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 39/75 4.01G 1.031 0.4443 1.025 33 640: 100%|██████████| 386/386 [00:35<00:00, 10.90it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.73it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.977 0.977 0.991 0.728\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 40/75 4.01G 1.026 0.4408 1.026 27 640: 100%|██████████| 386/386 [00:35<00:00, 10.98it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.22it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.976 0.977 0.991 0.73\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 41/75 4.01G 1.01 0.4325 1.016 38 640: 100%|██████████| 386/386 [00:35<00:00, 10.92it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.88it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.979 0.977 0.991 0.734\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 42/75 4.01G 1.014 0.4312 1.016 27 640: 100%|██████████| 386/386 [00:35<00:00, 10.83it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.984 0.97 0.99 0.737\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 43/75 4.01G 1.015 0.4328 1.018 26 640: 100%|██████████| 386/386 [00:34<00:00, 11.09it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.79it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.984 0.973 0.991 0.737\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 44/75 4.01G 1.009 0.4306 1.018 26 640: 100%|██████████| 386/386 [00:34<00:00, 11.04it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.19it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.982 0.976 0.992 0.734\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 45/75 4.01G 1.009 0.4255 1.012 26 640: 100%|██████████| 386/386 [00:34<00:00, 11.07it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.99it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.983 0.975 0.991 0.737\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 46/75 4.01G 1.005 0.4262 1.013 32 640: 100%|██████████| 386/386 [00:34<00:00, 11.03it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.09it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.983 0.977 0.991 0.734\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 47/75 4.01G 1.001 0.4223 1.011 30 640: 100%|██████████| 386/386 [00:34<00:00, 11.04it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.982 0.978 0.991 0.744\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 48/75 4.01G 1 0.4205 1.007 30 640: 100%|██████████| 386/386 [00:35<00:00, 10.82it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.20it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.978 0.978 0.991 0.731\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 49/75 4.01G 0.9894 0.4139 1.004 28 640: 100%|██████████| 386/386 [00:34<00:00, 11.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.984 0.977 0.991 0.737\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 50/75 4.01G 0.9881 0.4116 1.01 29 640: 100%|██████████| 386/386 [00:34<00:00, 11.03it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.12it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.983 0.973 0.991 0.736\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 51/75 4.01G 0.9787 0.4083 1.007 32 640: 100%|██████████| 386/386 [00:35<00:00, 10.93it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.18it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.984 0.972 0.991 0.742\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 52/75 4.01G 0.9848 0.4058 1.008 36 640: 100%|██████████| 386/386 [00:34<00:00, 11.05it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.97it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.983 0.979 0.993 0.739\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 53/75 4.01G 0.9799 0.4047 1.004 32 640: 100%|██████████| 386/386 [00:35<00:00, 10.99it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.13it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.987 0.978 0.991 0.735\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 54/75 4.01G 0.9871 0.405 1.007 37 640: 100%|██████████| 386/386 [00:35<00:00, 10.79it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.987 0.976 0.992 0.74\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 55/75 4.01G 0.9756 0.4016 1.001 27 640: 100%|██████████| 386/386 [00:34<00:00, 11.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.02it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.983 0.978 0.992 0.736\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 56/75 4.01G 0.9782 0.4004 1 22 640: 100%|██████████| 386/386 [00:35<00:00, 10.99it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.97it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.985 0.978 0.992 0.741\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 57/75 4.01G 0.9762 0.4005 0.9995 40 640: 100%|██████████| 386/386 [00:34<00:00, 11.06it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.10it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.988 0.977 0.993 0.739\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 58/75 4.01G 0.9765 0.3915 0.9991 39 640: 100%|██████████| 386/386 [00:34<00:00, 11.07it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.96it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.986 0.977 0.992 0.74\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 59/75 4.01G 0.9694 0.3908 0.998 31 640: 100%|██████████| 386/386 [00:35<00:00, 10.99it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.19it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.984 0.978 0.992 0.739\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 60/75 4.01G 0.9543 0.3885 0.9944 36 640: 100%|██████████| 386/386 [00:35<00:00, 10.87it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.982 0.982 0.992 0.743\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 61/75 4.01G 0.9681 0.3927 0.9933 28 640: 100%|██████████| 386/386 [00:35<00:00, 11.01it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.983 0.978 0.992 0.741\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 62/75 4.01G 0.9578 0.3859 0.9942 26 640: 100%|██████████| 386/386 [00:35<00:00, 10.90it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.985 0.98 0.992 0.74\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 63/75 4.01G 0.9556 0.383 0.9948 23 640: 100%|██████████| 386/386 [00:35<00:00, 11.01it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.16it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.985 0.98 0.992 0.743\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 64/75 4.01G 0.9538 0.3849 0.994 36 640: 100%|██████████| 386/386 [00:35<00:00, 11.02it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.986 0.978 0.992 0.743\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 65/75 4.01G 0.9475 0.3823 0.9894 35 640: 100%|██████████| 386/386 [00:35<00:00, 10.98it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.09it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.983 0.978 0.992 0.739\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Closing dataloader mosaic\n", + "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01, num_output_channels=3, method='weighted_average'), CLAHE(p=0.01, clip_limit=(1.0, 4.0), tile_grid_size=(8, 8))\n", + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 66/75 4.01G 0.9412 0.3463 1.002 16 640: 100%|██████████| 386/386 [00:35<00:00, 10.83it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.985 0.978 0.991 0.737\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 67/75 4.01G 0.9393 0.3446 1.005 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.16it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.986 0.976 0.991 0.74\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 68/75 4.01G 0.933 0.3398 1.001 16 640: 100%|██████���███| 386/386 [00:34<00:00, 11.25it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.02it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.984 0.98 0.991 0.743\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 69/75 4.01G 0.9288 0.3388 0.9981 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.24it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.99it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.988 0.976 0.992 0.741\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 70/75 4.01G 0.9258 0.3363 0.9976 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.24it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.12it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.987 0.977 0.992 0.742\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 71/75 4.01G 0.9173 0.3323 0.9919 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.24it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.98it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.989 0.974 0.991 0.743\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 72/75 4.01G 0.9119 0.3303 0.9896 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.06it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.04it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.991 0.972 0.992 0.743\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 73/75 4.01G 0.9126 0.3291 0.9877 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.20it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.99it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.99 0.974 0.992 0.744\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 74/75 4.01G 0.9078 0.3285 0.9853 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.16it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.14it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.99 0.974 0.992 0.744\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 75/75 4.01G 0.9056 0.3249 0.9883 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.22it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.08it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.99 0.972 0.991 0.744\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "75 epochs completed in 0.876 hours.\n", + "Optimizer stripped from runs/detect/train3/weights/last.pt, 6.2MB\n", + "Optimizer stripped from runs/detect/train3/weights/best.pt, 6.2MB\n", + "\n", + "Validating runs/detect/train3/weights/best.pt...\n", + "Ultralytics 8.3.68 🚀 Python-3.11.11 torch-2.5.1+cu121 CUDA:0 (NVIDIA A100-SXM4-40GB, 40514MiB)\n", + "Model summary (fused): 168 layers, 3,005,843 parameters, 0 gradients, 8.1 GFLOPs\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.10it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 1765 1765 0.99 0.974 0.993 0.744\n", + "Speed: 0.1ms preprocess, 0.4ms inference, 0.0ms loss, 0.8ms postprocess per image\n", + "Results saved to \u001b[1mruns/detect/train3\u001b[0m\n" + ] + } + ], + "source": [ + "# Train the model using the YAML file\n", + "results = model.train(data=\"dataset.yaml\", epochs=75, imgsz=640, batch=16)" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "authorship_tag": "ABX9TyNbZFJzXnxIVensm8YYcslN", + "gpuType": "A100", + "include_colab_link": true, + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "031ad2790ce14930a576fbb5a70aa6ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], @@ -7054,14 +3289,38 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_59facccfa2f44d87a5e14d42b2c5b112", - "IPY_MODEL_48cf627fbb9243c7b52a4b9f669b978c", - "IPY_MODEL_254ed912e97c42e589c81320bdb9c41f" + "IPY_MODEL_519f5224463440b3bc68e29278358fb8", + "IPY_MODEL_a8411f4b2e144c4c9cbb02333ecc9cf6", + "IPY_MODEL_1b3e894a8e4940189a407fca1f2d9928" ], - "layout": "IPY_MODEL_c3b871e061134a5f9561c8d473a46964" + "layout": "IPY_MODEL_6be43682c0b34f79b96f491140b3ca08" } }, - "0728467c6fc04a8bb5ef2abb6acca3d3": { + "031ced2c6b694a3b8776505f310cce41": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4a029944d7af46edbe012b98304991c7", + "max": 22580639, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_206ed7f680fa4221b5aab3e43f178a2b", + "value": 22580639 + } + }, + "045c5a90a4e44c62bff82074ea0a4206": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -7076,14 +3335,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ea2e17d8f56f4e918ef714cb3e70c840", - "IPY_MODEL_46123093d57f45af930f396d5147c91b", - "IPY_MODEL_3fa50ca858394748b2394a5ff78ae32a" + "IPY_MODEL_b79e766f1f8e4542b3570ab748546a10", + "IPY_MODEL_af1f4069ccaf4bb3a827598a2766b756", + "IPY_MODEL_9381a9a338a9490d82ebabca0381a53e" ], - "layout": "IPY_MODEL_8ab0ad4afb054b98b39cbf4a05379d14" + "layout": "IPY_MODEL_425e7bd48ff4460383de2ab0eb38967e" } }, - "0c4018c823ff47de9e365fbc83a1c22f": { + "0797084f7647413ab9a504b6593c0a32": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7135,7 +3394,7 @@ "width": null } }, - "0ee94c205ab8405ebc1fe535a51823d9": { + "0834f8a046f64c6e8e7f90a0dc5dce98": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7187,7 +3446,7 @@ "width": null } }, - "1273af0e3b084d0488ce9c34fb25f805": { + "0ba67d6a1251492ab1c52bd32fff16cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7239,37 +3498,23 @@ "width": null } }, - "1348742c59ba4a00aed3f1c10fc31fb8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "13eb3bf7aa4c456d8ecabf7b1463be92": { + "0c994560365a4a34b70e924a74a735fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "14fe10b7a9a24d8799aa1c6e044de554": { + "0e351ff0b22d4aada497b0ca28c176c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -7285,15 +3530,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6a7e26dcba854bca8504a57aa17e391c", - "max": 168116763, + "layout": "IPY_MODEL_2d51a4cc03804634a091282f126af34e", + "max": 6109, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_a3119fce6b6942f5b01e7d3cb5f0af27", - "value": 168116763 + "style": "IPY_MODEL_3bda2f93d975401fa19f19bdfa50cbc9", + "value": 6109 } }, - "1ea611c39ee74ede859f99a672709e15": { + "13dcd001c23b48deb862e0e51513e2f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7345,101 +3590,7 @@ "width": null } }, - "1fc97d1dd8a44c6ea5eec0008b9d7747": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "254ed912e97c42e589c81320bdb9c41f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9390dfa535a443b789930a452ebc334a", - "placeholder": "​", - "style": "IPY_MODEL_13eb3bf7aa4c456d8ecabf7b1463be92", - "value": " 46.3M/46.3M [00:00<00:00, 94.0MB/s]" - } - }, - "294b9c9a60664948a694b94d65a6e3ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8ab46df36bc0484188b7dd31d7e1b069", - "placeholder": "​", - "style": "IPY_MODEL_b0ca058cab35428e9b845bd5dfdefdc7", - "value": " 1.88k/1.88k [00:00<00:00, 104kB/s]" - } - }, - "2ebd4788f82d4d6f89cf08b89dc071bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_353da333b46a4487800c2243e4305153", - "placeholder": "​", - "style": "IPY_MODEL_c6dc7afc53094fb8a630dd9ca41e6c48", - "value": " 6.11k/6.11k [00:00<00:00, 334kB/s]" - } - }, - "347eb74722f74db7952ceb378885b5a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "353da333b46a4487800c2243e4305153": { + "148b98c041434feeb0317d1011f477f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7491,80 +3642,59 @@ "width": null } }, - "3967f6d26e3c4a27b5a9b073b3cfa819": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3982e7688d694e4e8e209cb166bf87c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "17e2fbaf98964eb9bf1b757d8b38cc98": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3ae35a6c4fa048b495ebe5a477de961b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f765b3535f8d48f987ff7f0d1ed0d27e", - "placeholder": "​", - "style": "IPY_MODEL_02ef3a2d28c84af98e466e399a42f8a4", - "value": "license-plate-object-detection.py: 100%" - } - }, - "3fa50ca858394748b2394a5ff78ae32a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0c4018c823ff47de9e365fbc83a1c22f", - "placeholder": "​", - "style": "IPY_MODEL_1fc97d1dd8a44c6ea5eec0008b9d7747", - "value": " 22.6M/22.6M [00:00<00:00, 97.0MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "414adc5bc471472ab50a847244ea1151": { + "196b240165764c24a538011e5e621fe8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -7579,13 +3709,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fd4ee64461ab4625b88ce785d089343d", + "layout": "IPY_MODEL_148b98c041434feeb0317d1011f477f3", "placeholder": "​", - "style": "IPY_MODEL_4924c3c2633a422390b2a8355d0f21e3", - "value": " 882/882 [00:00<00:00, 7847.12 examples/s]" + "style": "IPY_MODEL_7ab18382ff57418e807e29e7eb29b5f9", + "value": "0000.parquet: 100%" } }, - "442217a94c7642588b62016d06d6daab": { + "1b3e894a8e4940189a407fca1f2d9928": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -7600,139 +3730,71 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b13dffe8b9a445a4954f61b5aab10adc", + "layout": "IPY_MODEL_491b7bdb3768406c85fe5116b72720ad", "placeholder": "​", - "style": "IPY_MODEL_5280eb3992bb4ddd87ab4122ec6f89a0", - "value": "Generating train split: 100%" - } - }, - "455cf66e4c024f79b8ec35b1705cfa2e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_72ce547f43b844319e3a4e0ec71e5131", - "max": 1765, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_9e9bc0853164443ca02800c42bc7eed6", - "value": 1765 - } - }, - "458552538dc749178ea12de9e16d20e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_c90495736064439d951a9e3a99d1c69b", + "value": " 6176/6176 [00:00<00:00, 14923.28 examples/s]" } }, - "46123093d57f45af930f396d5147c91b": { + "1d5bd353a7764b078902a3626f4db345": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f0fdd04aa17741988080beb831fc6882", - "max": 22580639, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_bb05dfeca514492681181ba56a51225f", - "value": 22580639 + "layout": "IPY_MODEL_b6f6ad3a8c204a08b1bd04539938f190", + "placeholder": "​", + "style": "IPY_MODEL_f0b5371a218449ac8a09a750d985930b", + "value": "Generating test split: 100%" } }, - "48cf627fbb9243c7b52a4b9f669b978c": { + "1d83fe7833e64b3a9ff816b9a72f30ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fdababc887cc4ad99bcc5393b6873a81", - "max": 46289493, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_3967f6d26e3c4a27b5a9b073b3cfa819", - "value": 46289493 + "layout": "IPY_MODEL_0834f8a046f64c6e8e7f90a0dc5dce98", + "placeholder": "​", + "style": "IPY_MODEL_a486f99686834a7c8ca1819b93d8a017", + "value": " 1765/1765 [00:00<00:00, 18221.74 examples/s]" } }, - "4924c3c2633a422390b2a8355d0f21e3": { + "206ed7f680fa4221b5aab3e43f178a2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "4a57bf2d79874b4f9cf78eb604556f67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_759fd1dedf694f57b1bd23309e7749d8", - "max": 1878, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_4fa8ea4ec26d4d60983374fa44a0df76", - "value": 1878 - } - }, - "4fa8ea4ec26d4d60983374fa44a0df76": { + "224cc58849bc42f2b5a883e06616a3da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -7748,64 +3810,111 @@ "description_width": "" } }, - "508574e083e74f7eb2cf14657a8bce47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ad7fdb6be4624917b0c4e93574881a31", - "placeholder": "​", - "style": "IPY_MODEL_458552538dc749178ea12de9e16d20e0", - "value": " 1765/1765 [00:00<00:00, 4102.32 examples/s]" - } - }, - "5280eb3992bb4ddd87ab4122ec6f89a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "247ca90330cf4f5eb6e19556ad4a1e8c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "59facccfa2f44d87a5e14d42b2c5b112": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "281b7dcb7f9c49dd9b0f37d08a4c7128": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d8e237beb6114ceeb81d216c2b920570", - "placeholder": "​", - "style": "IPY_MODEL_e3f6a23964704488bac6372cb5e94bc3", - "value": "0000.parquet: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5e57bf8b48af4ce1b9ddf7f95359aec5": { + "2d51a4cc03804634a091282f126af34e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7857,53 +3966,38 @@ "width": null } }, - "5fd9fbac8ae14bcc9c3becb17980589c": { + "2ee4059e62b5489b8ec887bf2ea99430": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_646934b1a9c5438eba158d47ec8e804f", - "max": 6109, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_347eb74722f74db7952ceb378885b5a4", - "value": 6109 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5fe19a732e96458d9da6c04951f65792": { + "3ab0bcbd68294e99b34faf3fc5f02b53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_98f1dfdadd5440afa23fa793c5982b29", - "IPY_MODEL_14fe10b7a9a24d8799aa1c6e044de554", - "IPY_MODEL_80598cce422d4892a0aded2f1b78ec7e" - ], - "layout": "IPY_MODEL_85e1150e38e14575acec852e11e5ea43" + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "60a3b53107214e319bc9f72f128d7e9a": { + "3bda2f93d975401fa19f19bdfa50cbc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -7919,7 +4013,7 @@ "description_width": "" } }, - "63755d6d09744efcbc63297372e1d679": { + "404f2f2822bb4d1fa0b2316def55f9c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7971,7 +4065,7 @@ "width": null } }, - "646934b1a9c5438eba158d47ec8e804f": { + "425e7bd48ff4460383de2ab0eb38967e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -8023,7 +4117,31 @@ "width": null } }, - "6a7e26dcba854bca8504a57aa17e391c": { + "43f8f78aeae04edda400b863b2c6083b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ce3185a77edd4e54b5246f295b95f135", + "max": 168116763, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_224cc58849bc42f2b5a883e06616a3da", + "value": 168116763 + } + }, + "468d0430026b4070b3897267fa993594": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -8075,28 +4193,7 @@ "width": null } }, - "6c6ee1eec7764ab88d97dcdd3b823411": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d237c86e9087450bbba6b8bd48485dc6", - "placeholder": "​", - "style": "IPY_MODEL_bb59949fafd94785bae45321e0711837", - "value": "README.md: 100%" - } - }, - "72ce547f43b844319e3a4e0ec71e5131": { + "491b7bdb3768406c85fe5116b72720ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -8148,28 +4245,7 @@ "width": null } }, - "7457284827654633b7abb74a98428ecf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d7e0bebda4854874ae4288395d554412", - "placeholder": "​", - "style": "IPY_MODEL_03b20ea8d48048fa9ec11862c2855386", - "value": " 6176/6176 [00:01<00:00, 3871.21 examples/s]" - } - }, - "759fd1dedf694f57b1bd23309e7749d8": { + "4a029944d7af46edbe012b98304991c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -8221,7 +4297,73 @@ "width": null } }, - "75d2c6bf23b0484086d5020a6d6c3929": { + "4e36f85990a04502a5781f5d8c2bfb71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_404f2f2822bb4d1fa0b2316def55f9c9", + "max": 46289493, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2ee4059e62b5489b8ec887bf2ea99430", + "value": 46289493 + } + }, + "519f5224463440b3bc68e29278358fb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_13dcd001c23b48deb862e0e51513e2f7", + "placeholder": "​", + "style": "IPY_MODEL_ae4cc09971e44debaec05ae39e9930a3", + "value": "Generating train split: 100%" + } + }, + "51a57359a0f948989a236681e7e0288c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f3156888b2644b9c88284f5fbe2f6883", + "placeholder": "​", + "style": "IPY_MODEL_3ab0bcbd68294e99b34faf3fc5f02b53", + "value": "Generating validation split: 100%" + } + }, + "51f0663f1b79496cbe8ce3d38d1ef5a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -8237,81 +4379,28 @@ "description_width": "" } }, - "7d3fd3314d9d4d1e90d8820a79c9a954": { + "52125a8e46314bd7aeb8455db82d9f0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c70e52edfe3e4222b51b7542424a4c37", - "IPY_MODEL_f39c430c793943db88fa8e1ea26681d9", - "IPY_MODEL_414adc5bc471472ab50a847244ea1151" - ], - "layout": "IPY_MODEL_fbf960e037324895801507bb74b6f401" - } - }, - "7ddcffa3be8349dea54077b2abeee3ad": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_247ca90330cf4f5eb6e19556ad4a1e8c", + "placeholder": "​", + "style": "IPY_MODEL_7be0a5449c2b4d63b12b72afbb395dc4", + "value": " 46.3M/46.3M [00:00<00:00, 227MB/s]" } }, - "80598cce422d4892a0aded2f1b78ec7e": { + "58f60d66a8a1475c9b9c00c2e5ee23b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -8326,65 +4415,43 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_63755d6d09744efcbc63297372e1d679", + "layout": "IPY_MODEL_f42284f2326542f8bd723d612f9d1958", "placeholder": "​", - "style": "IPY_MODEL_a333e2d5bb284c5087f86ed4655268b9", - "value": " 168M/168M [00:01<00:00, 173MB/s]" + "style": "IPY_MODEL_cf76ed363c8c4803adfdd93ad76eaf74", + "value": " 6.11k/6.11k [00:00<00:00, 561kB/s]" } }, - "85e1150e38e14575acec852e11e5ea43": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "5ad4797273bc411489a835b267c999be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" + } + }, + "5efea1066ce24da3a99aba14dfce9783": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "8ab0ad4afb054b98b39cbf4a05379d14": { + "6be43682c0b34f79b96f491140b3ca08": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -8436,7 +4503,29 @@ "width": null } }, - "8ab46df36bc0484188b7dd31d7e1b069": { + "6e8a5580a981464e842c56ee88fdc29d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1d5bd353a7764b078902a3626f4db345", + "IPY_MODEL_99ffb36c5c4f47769e1661bfcee86808", + "IPY_MODEL_efd09f30af42475dad4a8d14423d9f57" + ], + "layout": "IPY_MODEL_c9cc9da8696f4f86b791d515e3f94af1" + } + }, + "71e2028d2470473286b6ddc41e2a9300": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -8488,29 +4577,7 @@ "width": null } }, - "8b2de2230ec3476b90d6803764c0365a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_442217a94c7642588b62016d06d6daab", - "IPY_MODEL_db6dfa339ecb4b06afc9a4b5b8d57c83", - "IPY_MODEL_7457284827654633b7abb74a98428ecf" - ], - "layout": "IPY_MODEL_fceb8ef4dff9473a854d223958f0770f" - } - }, - "9390dfa535a443b789930a452ebc334a": { + "743d23f277814df7acf58e99769fa995": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -8562,60 +4629,44 @@ "width": null } }, - "98f1dfdadd5440afa23fa793c5982b29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7ddcffa3be8349dea54077b2abeee3ad", - "placeholder": "​", - "style": "IPY_MODEL_b4806effde704aeead948920debebcdd", - "value": "0000.parquet: 100%" - } - }, - "9e9bc0853164443ca02800c42bc7eed6": { + "7697bd1df7a6462284177dfa8ee4d24c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "a3119fce6b6942f5b01e7d3cb5f0af27": { + "78ace055e9fb4d4f893f636f81c37c58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d39b084356424c76a031b3353f406f92", + "IPY_MODEL_4e36f85990a04502a5781f5d8c2bfb71", + "IPY_MODEL_52125a8e46314bd7aeb8455db82d9f0b" + ], + "layout": "IPY_MODEL_eed222dabb214d3d8c53e74900a1cd5e" } }, - "a333e2d5bb284c5087f86ed4655268b9": { + "7ab18382ff57418e807e29e7eb29b5f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -8630,7 +4681,7 @@ "description_width": "" } }, - "a80cd47fa08940e8a4e8b41a4ac689cf": { + "7be0a5449c2b4d63b12b72afbb395dc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -8645,7 +4696,7 @@ "description_width": "" } }, - "ad7fdb6be4624917b0c4e93574881a31": { + "7d5ab77c50b84eb38e3a2c22a92ca88e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -8697,22 +4748,7 @@ "width": null } }, - "b0ca058cab35428e9b845bd5dfdefdc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b13dffe8b9a445a4954f61b5aab10adc": { + "7d66f81978ea48e3aba3abe4bc34a362": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -8764,7 +4800,118 @@ "width": null } }, - "b4806effde704aeead948920debebcdd": { + "8a8a814623b1471f8d9b3c49c72592ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3321090379145e180e46744ce050c89", + "IPY_MODEL_0e351ff0b22d4aada497b0ca28c176c0", + "IPY_MODEL_58f60d66a8a1475c9b9c00c2e5ee23b9" + ], + "layout": "IPY_MODEL_e6c66c0d935d4d978e8f80d3186688dd" + } + }, + "9381a9a338a9490d82ebabca0381a53e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d5ab77c50b84eb38e3a2c22a92ca88e", + "placeholder": "​", + "style": "IPY_MODEL_eb91f17764f2478cb897e741eeae58ca", + "value": " 1.88k/1.88k [00:00<00:00, 101kB/s]" + } + }, + "95e2c81b520742bbb26480a87d26daaa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_51a57359a0f948989a236681e7e0288c", + "IPY_MODEL_ef900119072b40439fc89c63a939e766", + "IPY_MODEL_1d83fe7833e64b3a9ff816b9a72f30ab" + ], + "layout": "IPY_MODEL_468d0430026b4070b3897267fa993594" + } + }, + "99ffb36c5c4f47769e1661bfcee86808": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ba67d6a1251492ab1c52bd32fff16cf", + "max": 882, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a7f348ab9b4840529cfcb7baa8d5eba0", + "value": 882 + } + }, + "9b5bebb7d4d44af4b466e152520f46b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_196b240165764c24a538011e5e621fe8", + "IPY_MODEL_031ced2c6b694a3b8776505f310cce41", + "IPY_MODEL_dbcbc21e84c2408ebae6fd497c82bd9f" + ], + "layout": "IPY_MODEL_0797084f7647413ab9a504b6593c0a32" + } + }, + "9b8d306074524c4b8f3cadaa569035ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -8779,45 +4926,37 @@ "description_width": "" } }, - "bb05dfeca514492681181ba56a51225f": { + "9c89394e72e64c1e8d66ac67b5b97f00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "bb216713afad4ec7b55e9382498e8a93": { + "a486f99686834a7c8ca1819b93d8a017": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3ae35a6c4fa048b495ebe5a477de961b", - "IPY_MODEL_5fd9fbac8ae14bcc9c3becb17980589c", - "IPY_MODEL_2ebd4788f82d4d6f89cf08b89dc071bf" - ], - "layout": "IPY_MODEL_04b9d680e34c4ff89552b093f68b6e89" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "bb59949fafd94785bae45321e0711837": { + "a60a905fca554d6dbc8e0bc0d7ebed0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -8832,28 +4971,23 @@ "description_width": "" } }, - "bd39751fd17043ec836dc677d0b34031": { + "a7f348ab9b4840529cfcb7baa8d5eba0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e1fa41a7055c4595a0334b08a80c0f77", - "placeholder": "​", - "style": "IPY_MODEL_1348742c59ba4a00aed3f1c10fc31fb8", - "value": "Generating validation split: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c3b871e061134a5f9561c8d473a46964": { + "a802f9c6e8444c11b1bbef4c0cb3f1a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -8905,43 +5039,31 @@ "width": null } }, - "c6dc7afc53094fb8a630dd9ca41e6c48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c70e52edfe3e4222b51b7542424a4c37": { + "a8411f4b2e144c4c9cbb02333ecc9cf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5e57bf8b48af4ce1b9ddf7f95359aec5", - "placeholder": "​", - "style": "IPY_MODEL_a80cd47fa08940e8a4e8b41a4ac689cf", - "value": "Generating test split: 100%" + "layout": "IPY_MODEL_cc6bca626dbf4b1a8476616781d37e91", + "max": 6176, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c994560365a4a34b70e924a74a735fc", + "value": 6176 } }, - "c958344979d448c9b452c7ef99d0da1d": { + "a945dd404eeb4b418051e33aa3985a7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -8993,7 +5115,46 @@ "width": null } }, - "d237c86e9087450bbba6b8bd48485dc6": { + "ae4cc09971e44debaec05ae39e9930a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "af1f4069ccaf4bb3a827598a2766b756": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d66f81978ea48e3aba3abe4bc34a362", + "max": 1878, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_51f0663f1b79496cbe8ce3d38d1ef5a4", + "value": 1878 + } + }, + "b6f6ad3a8c204a08b1bd04539938f190": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -9045,7 +5206,28 @@ "width": null } }, - "d7e0bebda4854874ae4288395d554412": { + "b79e766f1f8e4542b3570ab748546a10": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_743d23f277814df7acf58e99769fa995", + "placeholder": "​", + "style": "IPY_MODEL_a60a905fca554d6dbc8e0bc0d7ebed0b", + "value": "README.md: 100%" + } + }, + "b9729d44ca98490ba230eb4c60444ea5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -9097,7 +5279,22 @@ "width": null } }, - "d7fd1c9f3e2a4da6958249e8f146d887": { + "c90495736064439d951a9e3a99d1c69b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c9cc9da8696f4f86b791d515e3f94af1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -9149,7 +5346,28 @@ "width": null } }, - "d8e237beb6114ceeb81d216c2b920570": { + "c9f48974fd874e5c925f631fbbfd5237": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a945dd404eeb4b418051e33aa3985a7e", + "placeholder": "​", + "style": "IPY_MODEL_9b8d306074524c4b8f3cadaa569035ca", + "value": "0000.parquet: 100%" + } + }, + "cc6bca626dbf4b1a8476616781d37e91": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -9201,31 +5419,7 @@ "width": null } }, - "db6dfa339ecb4b06afc9a4b5b8d57c83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c958344979d448c9b452c7ef99d0da1d", - "max": 6176, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_75d2c6bf23b0484086d5020a6d6c3929", - "value": 6176 - } - }, - "e1fa41a7055c4595a0334b08a80c0f77": { + "ce3185a77edd4e54b5246f295b95f135": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -9277,7 +5471,22 @@ "width": null } }, - "e3f6a23964704488bac6372cb5e94bc3": { + "cf76ed363c8c4803adfdd93ad76eaf74": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d125618b3bb74b638ee02d7871cc82b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -9292,7 +5501,7 @@ "description_width": "" } }, - "ea2e17d8f56f4e918ef714cb3e70c840": { + "d39b084356424c76a031b3353f406f92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -9307,13 +5516,55 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1ea611c39ee74ede859f99a672709e15", + "layout": "IPY_MODEL_a802f9c6e8444c11b1bbef4c0cb3f1a3", "placeholder": "​", - "style": "IPY_MODEL_3982e7688d694e4e8e209cb166bf87c2", + "style": "IPY_MODEL_d125618b3bb74b638ee02d7871cc82b9", "value": "0000.parquet: 100%" } }, - "f0fdd04aa17741988080beb831fc6882": { + "dbcbc21e84c2408ebae6fd497c82bd9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_17e2fbaf98964eb9bf1b757d8b38cc98", + "placeholder": "​", + "style": "IPY_MODEL_9c89394e72e64c1e8d66ac67b5b97f00", + "value": " 22.6M/22.6M [00:00<00:00, 220MB/s]" + } + }, + "e3321090379145e180e46744ce050c89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_281b7dcb7f9c49dd9b0f37d08a4c7128", + "placeholder": "​", + "style": "IPY_MODEL_5efea1066ce24da3a99aba14dfce9783", + "value": "license-plate-object-detection.py: 100%" + } + }, + "e6c66c0d935d4d978e8f80d3186688dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -9365,53 +5616,38 @@ "width": null } }, - "f110bf4cec204815b518dcd7262f4110": { + "ea096a2828f94674979b9c77fc1372b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6c6ee1eec7764ab88d97dcdd3b823411", - "IPY_MODEL_4a57bf2d79874b4f9cf78eb604556f67", - "IPY_MODEL_294b9c9a60664948a694b94d65a6e3ee" - ], - "layout": "IPY_MODEL_d7fd1c9f3e2a4da6958249e8f146d887" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f39c430c793943db88fa8e1ea26681d9": { + "eb91f17764f2478cb897e741eeae58ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0ee94c205ab8405ebc1fe535a51823d9", - "max": 882, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_60a3b53107214e319bc9f72f128d7e9a", - "value": 882 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "f765b3535f8d48f987ff7f0d1ed0d27e": { + "ee442a157c72446f9db8359ca590b202": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -9463,7 +5699,7 @@ "width": null } }, - "fbf960e037324895801507bb74b6f401": { + "eed222dabb214d3d8c53e74900a1cd5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -9515,7 +5751,67 @@ "width": null } }, - "fceb8ef4dff9473a854d223958f0770f": { + "ef900119072b40439fc89c63a939e766": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ee442a157c72446f9db8359ca590b202", + "max": 1765, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea096a2828f94674979b9c77fc1372b0", + "value": 1765 + } + }, + "efd09f30af42475dad4a8d14423d9f57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_71e2028d2470473286b6ddc41e2a9300", + "placeholder": "​", + "style": "IPY_MODEL_7697bd1df7a6462284177dfa8ee4d24c", + "value": " 882/882 [00:00<00:00, 17725.38 examples/s]" + } + }, + "f0b5371a218449ac8a09a750d985930b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f3156888b2644b9c88284f5fbe2f6883": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -9567,7 +5863,7 @@ "width": null } }, - "fd4ee64461ab4625b88ce785d089343d": { + "f42284f2326542f8bd723d612f9d1958": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -9619,7 +5915,50 @@ "width": null } }, - "fdababc887cc4ad99bcc5393b6873a81": { + "f6abb798974d491c8e0d82f2b101d55e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b9729d44ca98490ba230eb4c60444ea5", + "placeholder": "​", + "style": "IPY_MODEL_5ad4797273bc411489a835b267c999be", + "value": " 168M/168M [00:01<00:00, 210MB/s]" + } + }, + "f735de1ab77140dbb4c72207b8ebb514": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c9f48974fd874e5c925f631fbbfd5237", + "IPY_MODEL_43f8f78aeae04edda400b863b2c6083b", + "IPY_MODEL_f6abb798974d491c8e0d82f2b101d55e" + ], + "layout": "IPY_MODEL_fe34a93384d04276ab176dbb51276a31" + } + }, + "fe34a93384d04276ab176dbb51276a31": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel",