diff --git "a/NumberPlate_detection_using_YOLOv8.ipynb" "b/NumberPlate_detection_using_YOLOv8.ipynb"
--- "a/NumberPlate_detection_using_YOLOv8.ipynb"
+++ "b/NumberPlate_detection_using_YOLOv8.ipynb"
@@ -16,7 +16,14 @@
"id": "WvRyifGfTQQ2"
},
"source": [
- "# instance segmentation using various different approach"
+ "# license plate object detection using YOLOv8"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### dataset : https://huggingface.co/datasets/keremberke/license-plate-object-detection\n"
]
},
{
@@ -27,150 +34,106 @@
"base_uri": "https://localhost:8080/"
},
"id": "yVFdjWeRS8jh",
- "outputId": "8c057c2b-39c5-4407-ee03-b9358fe17c0b"
+ "outputId": "6a9c0a99-5dc3-4705-aa8b-14ea3db5c04c"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Requirement already satisfied: datasets in ./.venv/lib/python3.12/site-packages (3.2.0)\n",
+ "Collecting datasets\n",
+ " Downloading datasets-3.2.0-py3-none-any.whl.metadata (20 kB)\n",
"Collecting ultralytics\n",
" Downloading ultralytics-8.3.68-py3-none-any.whl.metadata (35 kB)\n",
- "Requirement already satisfied: filelock in ./.venv/lib/python3.12/site-packages (from datasets) (3.16.1)\n",
- "Requirement already satisfied: numpy>=1.17 in ./.venv/lib/python3.12/site-packages (from datasets) (2.2.1)\n",
- "Requirement already satisfied: pyarrow>=15.0.0 in ./.venv/lib/python3.12/site-packages (from datasets) (18.1.0)\n",
- "Requirement already satisfied: dill<0.3.9,>=0.3.0 in ./.venv/lib/python3.12/site-packages (from datasets) (0.3.8)\n",
- "Requirement already satisfied: pandas in ./.venv/lib/python3.12/site-packages (from datasets) (2.2.3)\n",
- "Requirement already satisfied: requests>=2.32.2 in ./.venv/lib/python3.12/site-packages (from datasets) (2.32.3)\n",
- "Requirement already satisfied: tqdm>=4.66.3 in ./.venv/lib/python3.12/site-packages (from datasets) (4.67.1)\n",
- "Requirement already satisfied: xxhash in ./.venv/lib/python3.12/site-packages (from datasets) (3.5.0)\n",
- "Requirement already satisfied: multiprocess<0.70.17 in ./.venv/lib/python3.12/site-packages (from datasets) (0.70.16)\n",
- "Requirement already satisfied: fsspec<=2024.9.0,>=2023.1.0 in ./.venv/lib/python3.12/site-packages (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets) (2024.9.0)\n",
- "Requirement already satisfied: aiohttp in ./.venv/lib/python3.12/site-packages (from datasets) (3.11.11)\n",
- "Requirement already satisfied: huggingface-hub>=0.23.0 in ./.venv/lib/python3.12/site-packages (from datasets) (0.27.1)\n",
- "Requirement already satisfied: packaging in ./.venv/lib/python3.12/site-packages (from datasets) (24.2)\n",
- "Requirement already satisfied: pyyaml>=5.1 in ./.venv/lib/python3.12/site-packages (from datasets) (6.0.2)\n",
- "Requirement already satisfied: matplotlib>=3.3.0 in ./.venv/lib/python3.12/site-packages (from ultralytics) (3.10.0)\n",
- "Collecting opencv-python>=4.6.0 (from ultralytics)\n",
- " Downloading opencv_python-4.11.0.86-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB)\n",
- "Requirement already satisfied: pillow>=7.1.2 in ./.venv/lib/python3.12/site-packages (from ultralytics) (11.1.0)\n",
- "Requirement already satisfied: scipy>=1.4.1 in ./.venv/lib/python3.12/site-packages (from ultralytics) (1.15.0)\n",
- "Collecting torch>=1.8.0 (from ultralytics)\n",
- " Downloading torch-2.5.1-cp312-cp312-manylinux1_x86_64.whl.metadata (28 kB)\n",
- "Collecting torchvision>=0.9.0 (from ultralytics)\n",
- " Downloading torchvision-0.20.1-cp312-cp312-manylinux1_x86_64.whl.metadata (6.1 kB)\n",
- "Requirement already satisfied: psutil in ./.venv/lib/python3.12/site-packages (from ultralytics) (6.1.1)\n",
- "Collecting py-cpuinfo (from ultralytics)\n",
- " Downloading py_cpuinfo-9.0.0-py3-none-any.whl.metadata (794 bytes)\n",
- "Requirement already satisfied: seaborn>=0.11.0 in ./.venv/lib/python3.12/site-packages (from ultralytics) (0.13.2)\n",
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from datasets) (3.17.0)\n",
+ "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from datasets) (1.26.4)\n",
+ "Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets) (17.0.0)\n",
+ "Collecting dill<0.3.9,>=0.3.0 (from datasets)\n",
+ " Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n",
+ "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets) (2.2.2)\n",
+ "Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.11/dist-packages (from datasets) (2.32.3)\n",
+ "Requirement already satisfied: tqdm>=4.66.3 in /usr/local/lib/python3.11/dist-packages (from datasets) (4.67.1)\n",
+ "Collecting xxhash (from datasets)\n",
+ " Downloading xxhash-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n",
+ "Collecting multiprocess<0.70.17 (from datasets)\n",
+ " Downloading multiprocess-0.70.16-py311-none-any.whl.metadata (7.2 kB)\n",
+ "Collecting fsspec<=2024.9.0,>=2023.1.0 (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets)\n",
+ " Downloading fsspec-2024.9.0-py3-none-any.whl.metadata (11 kB)\n",
+ "Requirement already satisfied: aiohttp in /usr/local/lib/python3.11/dist-packages (from datasets) (3.11.11)\n",
+ "Requirement already satisfied: huggingface-hub>=0.23.0 in /usr/local/lib/python3.11/dist-packages (from datasets) (0.27.1)\n",
+ "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from datasets) (24.2)\n",
+ "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from datasets) (6.0.2)\n",
+ "Requirement already satisfied: matplotlib>=3.3.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (3.10.0)\n",
+ "Requirement already satisfied: opencv-python>=4.6.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (4.10.0.84)\n",
+ "Requirement already satisfied: pillow>=7.1.2 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (11.1.0)\n",
+ "Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (1.13.1)\n",
+ "Requirement already satisfied: torch>=1.8.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (2.5.1+cu121)\n",
+ "Requirement already satisfied: torchvision>=0.9.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (0.20.1+cu121)\n",
+ "Requirement already satisfied: psutil in /usr/local/lib/python3.11/dist-packages (from ultralytics) (5.9.5)\n",
+ "Requirement already satisfied: py-cpuinfo in /usr/local/lib/python3.11/dist-packages (from ultralytics) (9.0.0)\n",
+ "Requirement already satisfied: seaborn>=0.11.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (0.13.2)\n",
"Collecting ultralytics-thop>=2.0.0 (from ultralytics)\n",
" Downloading ultralytics_thop-2.0.14-py3-none-any.whl.metadata (9.4 kB)\n",
- "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (2.4.4)\n",
- "Requirement already satisfied: aiosignal>=1.1.2 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (1.3.2)\n",
- "Requirement already satisfied: attrs>=17.3.0 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (24.3.0)\n",
- "Requirement already satisfied: frozenlist>=1.1.1 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (1.5.0)\n",
- "Requirement already satisfied: multidict<7.0,>=4.5 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (6.1.0)\n",
- "Requirement already satisfied: propcache>=0.2.0 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (0.2.1)\n",
- "Requirement already satisfied: yarl<2.0,>=1.17.0 in ./.venv/lib/python3.12/site-packages (from aiohttp->datasets) (1.18.3)\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in ./.venv/lib/python3.12/site-packages (from huggingface-hub>=0.23.0->datasets) (4.12.2)\n",
- "Requirement already satisfied: contourpy>=1.0.1 in ./.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (1.3.1)\n",
- "Requirement already satisfied: cycler>=0.10 in ./.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n",
- "Requirement already satisfied: fonttools>=4.22.0 in ./.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (4.55.3)\n",
- "Requirement already satisfied: kiwisolver>=1.3.1 in ./.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (1.4.8)\n",
- "Requirement already satisfied: pyparsing>=2.3.1 in ./.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (3.2.1)\n",
- "Requirement already satisfied: python-dateutil>=2.7 in ./.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0.post0)\n",
- "Requirement already satisfied: pytz>=2020.1 in ./.venv/lib/python3.12/site-packages (from pandas->datasets) (2024.2)\n",
- "Requirement already satisfied: tzdata>=2022.7 in ./.venv/lib/python3.12/site-packages (from pandas->datasets) (2024.2)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in ./.venv/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (3.4.1)\n",
- "Requirement already satisfied: idna<4,>=2.5 in ./.venv/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (3.10)\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in ./.venv/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (2.3.0)\n",
- "Requirement already satisfied: certifi>=2017.4.17 in ./.venv/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (2024.12.14)\n",
- "Collecting networkx (from torch>=1.8.0->ultralytics)\n",
- " Downloading networkx-3.4.2-py3-none-any.whl.metadata (6.3 kB)\n",
- "Collecting jinja2 (from torch>=1.8.0->ultralytics)\n",
- " Downloading jinja2-3.1.5-py3-none-any.whl.metadata (2.6 kB)\n",
- "Collecting nvidia-cuda-nvrtc-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n",
- " Downloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
- "Collecting nvidia-cuda-runtime-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n",
- " Downloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
- "Collecting nvidia-cuda-cupti-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n",
- " Downloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
- "Collecting nvidia-cudnn-cu12==9.1.0.70 (from torch>=1.8.0->ultralytics)\n",
- " Downloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
- "Collecting nvidia-cublas-cu12==12.4.5.8 (from torch>=1.8.0->ultralytics)\n",
- " Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
- "Collecting nvidia-cufft-cu12==11.2.1.3 (from torch>=1.8.0->ultralytics)\n",
- " Downloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
- "Collecting nvidia-curand-cu12==10.3.5.147 (from torch>=1.8.0->ultralytics)\n",
- " Downloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
- "Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch>=1.8.0->ultralytics)\n",
- " Downloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
- "Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch>=1.8.0->ultralytics)\n",
- " Downloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
- "Collecting nvidia-nccl-cu12==2.21.5 (from torch>=1.8.0->ultralytics)\n",
- " Downloading nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl.metadata (1.8 kB)\n",
- "Collecting nvidia-nvtx-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n",
- " Downloading nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.7 kB)\n",
- "Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n",
- " Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
- "Collecting triton==3.1.0 (from torch>=1.8.0->ultralytics)\n",
- " Downloading triton-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.3 kB)\n",
- "Collecting setuptools (from torch>=1.8.0->ultralytics)\n",
- " Using cached setuptools-75.8.0-py3-none-any.whl.metadata (6.7 kB)\n",
- "Collecting sympy==1.13.1 (from torch>=1.8.0->ultralytics)\n",
- " Downloading sympy-1.13.1-py3-none-any.whl.metadata (12 kB)\n",
- "Collecting mpmath<1.4,>=1.1.0 (from sympy==1.13.1->torch>=1.8.0->ultralytics)\n",
- " Downloading mpmath-1.3.0-py3-none-any.whl.metadata (8.6 kB)\n",
- "Requirement already satisfied: six>=1.5 in ./.venv/lib/python3.12/site-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.17.0)\n",
- "Collecting MarkupSafe>=2.0 (from jinja2->torch>=1.8.0->ultralytics)\n",
- " Downloading MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.0 kB)\n",
- "Downloading ultralytics-8.3.68-py3-none-any.whl (913 kB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m913.6/913.6 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hDownloading opencv_python-4.11.0.86-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (63.0 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m63.0/63.0 MB\u001b[0m \u001b[31m11.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hDownloading torch-2.5.1-cp312-cp312-manylinux1_x86_64.whl (906.4 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━��━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m906.4/906.4 MB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:02\u001b[0m\n",
- "\u001b[?25hDownloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m10.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hDownloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:02\u001b[0m\n",
- "\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m13.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hDownloading nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl (188.7 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m188.7/188.7 MB\u001b[0m \u001b[31m11.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hDownloading nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (99 kB)\n",
- "Downloading sympy-1.13.1-py3-none-any.whl (6.2 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.2/6.2 MB\u001b[0m \u001b[31m11.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
- "\u001b[?25hDownloading triton-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (209.6 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m209.6/209.6 MB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hDownloading torchvision-0.20.1-cp312-cp312-manylinux1_x86_64.whl (7.2 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:01\u001b[0m\n",
+ "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (2.4.4)\n",
+ "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (1.3.2)\n",
+ "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (24.3.0)\n",
+ "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (1.5.0)\n",
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (6.1.0)\n",
+ "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (0.2.1)\n",
+ "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (1.18.3)\n",
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.23.0->datasets) (4.12.2)\n",
+ "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.3.1)\n",
+ "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n",
+ "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (4.55.5)\n",
+ "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.4.8)\n",
+ "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (3.2.1)\n",
+ "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (2.8.2)\n",
+ "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets) (2024.2)\n",
+ "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets) (2025.1)\n",
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets) (3.4.1)\n",
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets) (3.10)\n",
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets) (2.3.0)\n",
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets) (2024.12.14)\n",
+ "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (3.4.2)\n",
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (3.1.5)\n",
+ "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.1.105)\n",
+ "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.1.105)\n",
+ "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.1.105)\n",
+ "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (9.1.0.70)\n",
+ "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.1.3.1)\n",
+ "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (11.0.2.54)\n",
+ "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (10.3.2.106)\n",
+ "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (11.4.5.107)\n",
+ "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.1.0.106)\n",
+ "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (2.21.5)\n",
+ "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.1.105)\n",
+ "Requirement already satisfied: triton==3.1.0 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (3.1.0)\n",
+ "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (1.13.1)\n",
+ "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.11/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.8.0->ultralytics) (12.6.85)\n",
+ "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=1.8.0->ultralytics) (1.3.0)\n",
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.17.0)\n",
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=1.8.0->ultralytics) (3.0.2)\n",
+ "Downloading datasets-3.2.0-py3-none-any.whl (480 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m9.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading ultralytics-8.3.68-py3-none-any.whl (913 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m913.6/913.6 kB\u001b[0m \u001b[31m34.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m9.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading fsspec-2024.9.0-py3-none-any.whl (179 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m14.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading multiprocess-0.70.16-py311-none-any.whl (143 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.5/143.5 kB\u001b[0m \u001b[31m11.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading ultralytics_thop-2.0.14-py3-none-any.whl (26 kB)\n",
- "Downloading py_cpuinfo-9.0.0-py3-none-any.whl (22 kB)\n",
- "Downloading jinja2-3.1.5-py3-none-any.whl (134 kB)\n",
- "Downloading networkx-3.4.2-py3-none-any.whl (1.7 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mta \u001b[36m0:00:01\u001b[0m\n",
- "\u001b[?25hUsing cached setuptools-75.8.0-py3-none-any.whl (1.2 MB)\n",
- "Downloading MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (23 kB)\n",
- "Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.2/536.2 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hInstalling collected packages: py-cpuinfo, mpmath, triton, sympy, setuptools, opencv-python, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, networkx, MarkupSafe, nvidia-cusparse-cu12, nvidia-cudnn-cu12, jinja2, nvidia-cusolver-cu12, torch, ultralytics-thop, torchvision, ultralytics\n",
- "Successfully installed MarkupSafe-3.0.2 jinja2-3.1.5 mpmath-1.3.0 networkx-3.4.2 nvidia-cublas-cu12-12.4.5.8 nvidia-cuda-cupti-cu12-12.4.127 nvidia-cuda-nvrtc-cu12-12.4.127 nvidia-cuda-runtime-cu12-12.4.127 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.2.1.3 nvidia-curand-cu12-10.3.5.147 nvidia-cusolver-cu12-11.6.1.9 nvidia-cusparse-cu12-12.3.1.170 nvidia-nccl-cu12-2.21.5 nvidia-nvjitlink-cu12-12.4.127 nvidia-nvtx-cu12-12.4.127 opencv-python-4.11.0.86 py-cpuinfo-9.0.0 setuptools-75.8.0 sympy-1.13.1 torch-2.5.1 torchvision-0.20.1 triton-3.1.0 ultralytics-8.3.68 ultralytics-thop-2.0.14\n"
+ "Downloading xxhash-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.8/194.8 kB\u001b[0m \u001b[31m15.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hInstalling collected packages: xxhash, fsspec, dill, multiprocess, ultralytics-thop, datasets, ultralytics\n",
+ " Attempting uninstall: fsspec\n",
+ " Found existing installation: fsspec 2024.10.0\n",
+ " Uninstalling fsspec-2024.10.0:\n",
+ " Successfully uninstalled fsspec-2024.10.0\n",
+ "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
+ "gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\u001b[0m\u001b[31m\n",
+ "\u001b[0mSuccessfully installed datasets-3.2.0 dill-0.3.8 fsspec-2024.9.0 multiprocess-0.70.16 ultralytics-8.3.68 ultralytics-thop-2.0.14 xxhash-3.5.0\n"
]
}
],
@@ -184,112 +147,225 @@
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 430,
+ "height": 402,
"referenced_widgets": [
- "f110bf4cec204815b518dcd7262f4110",
- "6c6ee1eec7764ab88d97dcdd3b823411",
- "4a57bf2d79874b4f9cf78eb604556f67",
- "294b9c9a60664948a694b94d65a6e3ee",
- "d7fd1c9f3e2a4da6958249e8f146d887",
- "d237c86e9087450bbba6b8bd48485dc6",
- "bb59949fafd94785bae45321e0711837",
- "759fd1dedf694f57b1bd23309e7749d8",
- "4fa8ea4ec26d4d60983374fa44a0df76",
- "8ab46df36bc0484188b7dd31d7e1b069",
- "b0ca058cab35428e9b845bd5dfdefdc7",
- "bb216713afad4ec7b55e9382498e8a93",
- "3ae35a6c4fa048b495ebe5a477de961b",
- "5fd9fbac8ae14bcc9c3becb17980589c",
- "2ebd4788f82d4d6f89cf08b89dc071bf",
- "04b9d680e34c4ff89552b093f68b6e89",
- "f765b3535f8d48f987ff7f0d1ed0d27e",
- "02ef3a2d28c84af98e466e399a42f8a4",
- "646934b1a9c5438eba158d47ec8e804f",
- "347eb74722f74db7952ceb378885b5a4",
- "353da333b46a4487800c2243e4305153",
- "c6dc7afc53094fb8a630dd9ca41e6c48",
- "5fe19a732e96458d9da6c04951f65792",
- "98f1dfdadd5440afa23fa793c5982b29",
- "14fe10b7a9a24d8799aa1c6e044de554",
- "80598cce422d4892a0aded2f1b78ec7e",
- "85e1150e38e14575acec852e11e5ea43",
- "7ddcffa3be8349dea54077b2abeee3ad",
- "b4806effde704aeead948920debebcdd",
- "6a7e26dcba854bca8504a57aa17e391c",
- "a3119fce6b6942f5b01e7d3cb5f0af27",
- "63755d6d09744efcbc63297372e1d679",
- "a333e2d5bb284c5087f86ed4655268b9",
- "057301b8a5694d14bc3fcb71d0c29eaf",
- "59facccfa2f44d87a5e14d42b2c5b112",
- "48cf627fbb9243c7b52a4b9f669b978c",
- "254ed912e97c42e589c81320bdb9c41f",
- "c3b871e061134a5f9561c8d473a46964",
- "d8e237beb6114ceeb81d216c2b920570",
- "e3f6a23964704488bac6372cb5e94bc3",
- "fdababc887cc4ad99bcc5393b6873a81",
- "3967f6d26e3c4a27b5a9b073b3cfa819",
- "9390dfa535a443b789930a452ebc334a",
- "13eb3bf7aa4c456d8ecabf7b1463be92",
- "0728467c6fc04a8bb5ef2abb6acca3d3",
- "ea2e17d8f56f4e918ef714cb3e70c840",
- "46123093d57f45af930f396d5147c91b",
- "3fa50ca858394748b2394a5ff78ae32a",
- "8ab0ad4afb054b98b39cbf4a05379d14",
- "1ea611c39ee74ede859f99a672709e15",
- "3982e7688d694e4e8e209cb166bf87c2",
- "f0fdd04aa17741988080beb831fc6882",
- "bb05dfeca514492681181ba56a51225f",
- "0c4018c823ff47de9e365fbc83a1c22f",
- "1fc97d1dd8a44c6ea5eec0008b9d7747",
- "8b2de2230ec3476b90d6803764c0365a",
- "442217a94c7642588b62016d06d6daab",
- "db6dfa339ecb4b06afc9a4b5b8d57c83",
- "7457284827654633b7abb74a98428ecf",
- "fceb8ef4dff9473a854d223958f0770f",
- "b13dffe8b9a445a4954f61b5aab10adc",
- "5280eb3992bb4ddd87ab4122ec6f89a0",
- "c958344979d448c9b452c7ef99d0da1d",
- "75d2c6bf23b0484086d5020a6d6c3929",
- "d7e0bebda4854874ae4288395d554412",
- "03b20ea8d48048fa9ec11862c2855386",
- "053f3073855549259ec5e3ea7a2c3863",
- "bd39751fd17043ec836dc677d0b34031",
- "455cf66e4c024f79b8ec35b1705cfa2e",
- "508574e083e74f7eb2cf14657a8bce47",
- "1273af0e3b084d0488ce9c34fb25f805",
- "e1fa41a7055c4595a0334b08a80c0f77",
- "1348742c59ba4a00aed3f1c10fc31fb8",
- "72ce547f43b844319e3a4e0ec71e5131",
- "9e9bc0853164443ca02800c42bc7eed6",
- "ad7fdb6be4624917b0c4e93574881a31",
- "458552538dc749178ea12de9e16d20e0",
- "7d3fd3314d9d4d1e90d8820a79c9a954",
- "c70e52edfe3e4222b51b7542424a4c37",
- "f39c430c793943db88fa8e1ea26681d9",
- "414adc5bc471472ab50a847244ea1151",
- "fbf960e037324895801507bb74b6f401",
- "5e57bf8b48af4ce1b9ddf7f95359aec5",
- "a80cd47fa08940e8a4e8b41a4ac689cf",
- "0ee94c205ab8405ebc1fe535a51823d9",
- "60a3b53107214e319bc9f72f128d7e9a",
- "fd4ee64461ab4625b88ce785d089343d",
- "4924c3c2633a422390b2a8355d0f21e3"
+ "045c5a90a4e44c62bff82074ea0a4206",
+ "b79e766f1f8e4542b3570ab748546a10",
+ "af1f4069ccaf4bb3a827598a2766b756",
+ "9381a9a338a9490d82ebabca0381a53e",
+ "425e7bd48ff4460383de2ab0eb38967e",
+ "743d23f277814df7acf58e99769fa995",
+ "a60a905fca554d6dbc8e0bc0d7ebed0b",
+ "7d66f81978ea48e3aba3abe4bc34a362",
+ "51f0663f1b79496cbe8ce3d38d1ef5a4",
+ "7d5ab77c50b84eb38e3a2c22a92ca88e",
+ "eb91f17764f2478cb897e741eeae58ca",
+ "8a8a814623b1471f8d9b3c49c72592ef",
+ "e3321090379145e180e46744ce050c89",
+ "0e351ff0b22d4aada497b0ca28c176c0",
+ "58f60d66a8a1475c9b9c00c2e5ee23b9",
+ "e6c66c0d935d4d978e8f80d3186688dd",
+ "281b7dcb7f9c49dd9b0f37d08a4c7128",
+ "5efea1066ce24da3a99aba14dfce9783",
+ "2d51a4cc03804634a091282f126af34e",
+ "3bda2f93d975401fa19f19bdfa50cbc9",
+ "f42284f2326542f8bd723d612f9d1958",
+ "cf76ed363c8c4803adfdd93ad76eaf74",
+ "f735de1ab77140dbb4c72207b8ebb514",
+ "c9f48974fd874e5c925f631fbbfd5237",
+ "43f8f78aeae04edda400b863b2c6083b",
+ "f6abb798974d491c8e0d82f2b101d55e",
+ "fe34a93384d04276ab176dbb51276a31",
+ "a945dd404eeb4b418051e33aa3985a7e",
+ "9b8d306074524c4b8f3cadaa569035ca",
+ "ce3185a77edd4e54b5246f295b95f135",
+ "224cc58849bc42f2b5a883e06616a3da",
+ "b9729d44ca98490ba230eb4c60444ea5",
+ "5ad4797273bc411489a835b267c999be",
+ "78ace055e9fb4d4f893f636f81c37c58",
+ "d39b084356424c76a031b3353f406f92",
+ "4e36f85990a04502a5781f5d8c2bfb71",
+ "52125a8e46314bd7aeb8455db82d9f0b",
+ "eed222dabb214d3d8c53e74900a1cd5e",
+ "a802f9c6e8444c11b1bbef4c0cb3f1a3",
+ "d125618b3bb74b638ee02d7871cc82b9",
+ "404f2f2822bb4d1fa0b2316def55f9c9",
+ "2ee4059e62b5489b8ec887bf2ea99430",
+ "247ca90330cf4f5eb6e19556ad4a1e8c",
+ "7be0a5449c2b4d63b12b72afbb395dc4",
+ "9b5bebb7d4d44af4b466e152520f46b0",
+ "196b240165764c24a538011e5e621fe8",
+ "031ced2c6b694a3b8776505f310cce41",
+ "dbcbc21e84c2408ebae6fd497c82bd9f",
+ "0797084f7647413ab9a504b6593c0a32",
+ "148b98c041434feeb0317d1011f477f3",
+ "7ab18382ff57418e807e29e7eb29b5f9",
+ "4a029944d7af46edbe012b98304991c7",
+ "206ed7f680fa4221b5aab3e43f178a2b",
+ "17e2fbaf98964eb9bf1b757d8b38cc98",
+ "9c89394e72e64c1e8d66ac67b5b97f00",
+ "031ad2790ce14930a576fbb5a70aa6ac",
+ "519f5224463440b3bc68e29278358fb8",
+ "a8411f4b2e144c4c9cbb02333ecc9cf6",
+ "1b3e894a8e4940189a407fca1f2d9928",
+ "6be43682c0b34f79b96f491140b3ca08",
+ "13dcd001c23b48deb862e0e51513e2f7",
+ "ae4cc09971e44debaec05ae39e9930a3",
+ "cc6bca626dbf4b1a8476616781d37e91",
+ "0c994560365a4a34b70e924a74a735fc",
+ "491b7bdb3768406c85fe5116b72720ad",
+ "c90495736064439d951a9e3a99d1c69b",
+ "95e2c81b520742bbb26480a87d26daaa",
+ "51a57359a0f948989a236681e7e0288c",
+ "ef900119072b40439fc89c63a939e766",
+ "1d83fe7833e64b3a9ff816b9a72f30ab",
+ "468d0430026b4070b3897267fa993594",
+ "f3156888b2644b9c88284f5fbe2f6883",
+ "3ab0bcbd68294e99b34faf3fc5f02b53",
+ "ee442a157c72446f9db8359ca590b202",
+ "ea096a2828f94674979b9c77fc1372b0",
+ "0834f8a046f64c6e8e7f90a0dc5dce98",
+ "a486f99686834a7c8ca1819b93d8a017",
+ "6e8a5580a981464e842c56ee88fdc29d",
+ "1d5bd353a7764b078902a3626f4db345",
+ "99ffb36c5c4f47769e1661bfcee86808",
+ "efd09f30af42475dad4a8d14423d9f57",
+ "c9cc9da8696f4f86b791d515e3f94af1",
+ "b6f6ad3a8c204a08b1bd04539938f190",
+ "f0b5371a218449ac8a09a750d985930b",
+ "0ba67d6a1251492ab1c52bd32fff16cf",
+ "a7f348ab9b4840529cfcb7baa8d5eba0",
+ "71e2028d2470473286b6ddc41e2a9300",
+ "7697bd1df7a6462284177dfa8ee4d24c"
]
},
"id": "jnJT1oEGVV6d",
- "outputId": "1c18d27b-310f-4c45-b299-f2839a2922c8"
+ "outputId": "2f509f0a-4f9c-4c05-855f-4caa059f23b6"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "/home/xd/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
- " from .autonotebook import tqdm as notebook_tqdm\n",
- "Generating train split: 100%|██████████| 6176/6176 [00:02<00:00, 2845.51 examples/s]\n",
- "Generating validation split: 100%|██████████| 1765/1765 [00:00<00:00, 24120.12 examples/s]\n",
- "Generating test split: 100%|██████████| 882/882 [00:00<00:00, 21573.47 examples/s]\n"
+ "/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n",
+ "The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
+ "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
+ "You will be able to reuse this secret in all of your notebooks.\n",
+ "Please note that authentication is recommended but still optional to access public models or datasets.\n",
+ " warnings.warn(\n"
]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "045c5a90a4e44c62bff82074ea0a4206",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "README.md: 0%| | 0.00/1.88k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "8a8a814623b1471f8d9b3c49c72592ef",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "license-plate-object-detection.py: 0%| | 0.00/6.11k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "f735de1ab77140dbb4c72207b8ebb514",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "0000.parquet: 0%| | 0.00/168M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "78ace055e9fb4d4f893f636f81c37c58",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "0000.parquet: 0%| | 0.00/46.3M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "9b5bebb7d4d44af4b466e152520f46b0",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "0000.parquet: 0%| | 0.00/22.6M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "031ad2790ce14930a576fbb5a70aa6ac",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Generating train split: 0%| | 0/6176 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "95e2c81b520742bbb26480a87d26daaa",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Generating validation split: 0%| | 0/1765 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "6e8a5580a981464e842c56ee88fdc29d",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Generating test split: 0%| | 0/882 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
}
],
"source": [
@@ -306,7 +382,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "haIMLABdXUmZ",
- "outputId": "f9730faf-6301-4f97-a441-8ef4f97f2f78"
+ "outputId": "b26a0d7c-6b83-4c8f-db80-df9f900f0b2f"
},
"outputs": [
{
@@ -314,7 +390,7 @@
"output_type": "stream",
"text": [
"Creating new Ultralytics Settings v0.0.6 file ✅ \n",
- "View Ultralytics Settings with 'yolo settings' or at '/home/xd/.config/Ultralytics/settings.json'\n",
+ "View Ultralytics Settings with 'yolo settings' or at '/root/.config/Ultralytics/settings.json'\n",
"Update Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. For help see https://docs.ultralytics.com/quickstart/#ultralytics-settings.\n"
]
}
@@ -333,10 +409,10 @@
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 685
+ "height": 425
},
"id": "xEqD51f1Xmce",
- "outputId": "8568a97c-a572-4e2b-c175-89e1c8c56f4a"
+ "outputId": "6382a9b0-ab55-422f-ca8f-b1e52cb18009"
},
"outputs": [
{
@@ -359,8 +435,15 @@
},
{
"data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "summary": "{\n \"name\": \"df_train\",\n \"rows\": 6176,\n \"fields\": [\n {\n \"column\": \"image_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1783,\n \"min\": 0,\n \"max\": 6175,\n \"num_unique_values\": 6176,\n \"samples\": [\n 2669,\n 2934,\n 5218\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"image\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"width\",\n \"properties\": {\n \"dtype\": \"int32\",\n \"num_unique_values\": 80,\n \"samples\": [\n 300,\n 472,\n 370\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"height\",\n \"properties\": {\n \"dtype\": \"int32\",\n \"num_unique_values\": 205,\n \"samples\": [\n 342,\n 427,\n 512\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"objects\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
+ "type": "dataframe",
+ "variable_name": "df_train"
+ },
"text/html": [
- "
\n",
+ "\n",
+ "
\n",
+ "
\n",
"\n",
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ "
\n"
],
"text/plain": [
" image_id image width height \\\n",
@@ -463,7 +755,11 @@
"cell_type": "code",
"execution_count": 5,
"metadata": {
- "id": "5gxgevPxZU26"
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "5gxgevPxZU26",
+ "outputId": "58a58ccb-985c-4098-ab72-a9ac4b57e566"
},
"outputs": [
{
@@ -477,7 +773,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "100%|██████████| 6.25M/6.25M [00:00<00:00, 56.6MB/s]\n"
+ "100%|██████████| 6.25M/6.25M [00:00<00:00, 76.2MB/s]\n"
]
}
],
@@ -494,7 +790,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "SORMPYhvZb4Z",
- "outputId": "1fb3982a-7f0f-4ed6-986a-cff7ea88117f"
+ "outputId": "365feb67-da37-4a29-afe1-3155667a1bbe"
},
"outputs": [
{
@@ -513,6198 +809,11 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 7,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "3Hff3i23bPE4",
- "outputId": "6f2096e1-8598-4af0-8116-134dc231bdcc"
+ "id": "3Hff3i23bPE4"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n",
- "0\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# Output directories\n",
"image_dir = 'dataset/images/train'\n",
@@ -6746,7 +855,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 8,
"metadata": {
"id": "f_J9xp_hpenL"
},
@@ -6793,22 +902,21 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 11,
"metadata": {
"colab": {
- "base_uri": "https://localhost:8080/",
- "height": 1000
+ "base_uri": "https://localhost:8080/"
},
"id": "UpfV5l2Dom3t",
- "outputId": "1450c3fe-04d1-4708-9fe8-ccd22dda3f05"
+ "outputId": "78e0a3c8-34cc-4f92-f31d-62b4b06a132a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Ultralytics 8.3.68 🚀 Python-3.12.8 torch-2.5.1+cu124 CUDA:0 (NVIDIA GeForce 920MX, 2003MiB)\n",
- "\u001b[34m\u001b[1mengine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8n.pt, data=dataset.yaml, epochs=100, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train5, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=/home/xd/Documents/machine_learning/ML_Notebooks/runs/detect/train5\n",
+ "Ultralytics 8.3.68 🚀 Python-3.11.11 torch-2.5.1+cu121 CUDA:0 (NVIDIA A100-SXM4-40GB, 40514MiB)\n",
+ "\u001b[34m\u001b[1mengine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8n.pt, data=dataset.yaml, epochs=75, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train3, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train3\n",
"\n",
" from n params module arguments \n",
" 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] \n",
@@ -6837,6 +945,7 @@
"Model summary: 225 layers, 3,011,043 parameters, 3,011,027 gradients, 8.2 GFLOPs\n",
"\n",
"Transferred 355/355 items from pretrained weights\n",
+ "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/detect/train3', view at http://localhost:6006/\n",
"Freezing layer 'model.22.dfl.conv.weight'\n",
"\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks...\n",
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n"
@@ -6846,35 +955,36 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /home/xd/Documents/machine_learning/ML_Notebooks/dataset/labels/train.cache... 6176 images, 0 backgrounds, 0 corrupt: 100%|██████████| 6176/6176 [00:00, ?it/s]\n",
- "\u001b[34m\u001b[1mval: \u001b[0mScanning /home/xd/Documents/machine_learning/ML_Notebooks/dataset/labels/val... 1765 images, 0 backgrounds, 0 corrupt: 100%|██████████| 1765/1765 [00:02<00:00, 735.78it/s]"
+ "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/dataset/labels/train.cache... 6176 images, 0 backgrounds, 0 corrupt: 100%|██████████| 6176/6176 [00:00, ?it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /home/xd/Documents/machine_learning/ML_Notebooks/dataset/labels/val.cache\n"
+ "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01, num_output_channels=3, method='weighted_average'), CLAHE(p=0.01, clip_limit=(1.0, 4.0), tile_grid_size=(8, 8))\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "\n"
+ "\n",
+ "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/dataset/labels/val.cache... 1765 images, 0 backgrounds, 0 corrupt: 100%|██████████| 1765/1765 [00:00, ?it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Plotting labels to /home/xd/Documents/machine_learning/ML_Notebooks/runs/detect/train5/labels.jpg... \n",
+ "Plotting labels to runs/detect/train3/labels.jpg... \n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... \n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m AdamW(lr=0.002, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)\n",
+ "\u001b[34m\u001b[1mTensorBoard: \u001b[0mmodel graph visualization added ✅\n",
"Image sizes 640 train, 640 val\n",
- "Using 4 dataloader workers\n",
- "Logging results to \u001b[1m/home/xd/Documents/machine_learning/ML_Notebooks/runs/detect/train5\u001b[0m\n",
- "Starting training for 100 epochs...\n",
+ "Using 8 dataloader workers\n",
+ "Logging results to \u001b[1mruns/detect/train3\u001b[0m\n",
+ "Starting training for 75 epochs...\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
]
@@ -6883,165 +993,2290 @@
"name": "stderr",
"output_type": "stream",
"text": [
- " 1/100 2G 1.626 4.397 1.65 30 640: 1%| | 2/386 [00:54<2:55:25, 27.41s/it]\n"
+ " 1/75 3.87G 1.143 0.681 1.065 31 640: 100%|██████████| 386/386 [00:38<00:00, 9.98it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.89it/s]"
]
},
{
- "ename": "OutOfMemoryError",
- "evalue": "CUDA out of memory. Tried to allocate 34.00 MiB. GPU 0 has a total capacity of 1.96 GiB of which 33.19 MiB is free. Including non-PyTorch memory, this process has 1.91 GiB memory in use. Of the allocated memory 1.79 GiB is allocated by PyTorch, and 65.71 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mOutOfMemoryError\u001b[0m Traceback (most recent call last)",
- "Cell \u001b[0;32mIn[15], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Train the model using the YAML file\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mdataset.yaml\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m100\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mimgsz\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m640\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m16\u001b[39;49m\u001b[43m)\u001b[49m\n",
- "File \u001b[0;32m~/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/ultralytics/engine/model.py:806\u001b[0m, in \u001b[0;36mModel.train\u001b[0;34m(self, trainer, **kwargs)\u001b[0m\n\u001b[1;32m 803\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer\u001b[38;5;241m.\u001b[39mmodel\n\u001b[1;32m 805\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer\u001b[38;5;241m.\u001b[39mhub_session \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msession \u001b[38;5;66;03m# attach optional HUB session\u001b[39;00m\n\u001b[0;32m--> 806\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 807\u001b[0m \u001b[38;5;66;03m# Update model and cfg after training\u001b[39;00m\n\u001b[1;32m 808\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m RANK \u001b[38;5;129;01min\u001b[39;00m {\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m0\u001b[39m}:\n",
- "File \u001b[0;32m~/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/ultralytics/engine/trainer.py:207\u001b[0m, in \u001b[0;36mBaseTrainer.train\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 204\u001b[0m ddp_cleanup(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28mstr\u001b[39m(file))\n\u001b[1;32m 206\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 207\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_train\u001b[49m\u001b[43m(\u001b[49m\u001b[43mworld_size\u001b[49m\u001b[43m)\u001b[49m\n",
- "File \u001b[0;32m~/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/ultralytics/engine/trainer.py:388\u001b[0m, in \u001b[0;36mBaseTrainer._do_train\u001b[0;34m(self, world_size)\u001b[0m\n\u001b[1;32m 383\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtloss \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 384\u001b[0m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtloss \u001b[38;5;241m*\u001b[39m i \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloss_items) \u001b[38;5;241m/\u001b[39m (i \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtloss \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloss_items\n\u001b[1;32m 385\u001b[0m )\n\u001b[1;32m 387\u001b[0m \u001b[38;5;66;03m# Backward\u001b[39;00m\n\u001b[0;32m--> 388\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mscaler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mscale\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mloss\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 390\u001b[0m \u001b[38;5;66;03m# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html\u001b[39;00m\n\u001b[1;32m 391\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ni \u001b[38;5;241m-\u001b[39m last_opt_step \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maccumulate:\n",
- "File \u001b[0;32m~/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/torch/_tensor.py:581\u001b[0m, in \u001b[0;36mTensor.backward\u001b[0;34m(self, gradient, retain_graph, create_graph, inputs)\u001b[0m\n\u001b[1;32m 571\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m has_torch_function_unary(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 572\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m handle_torch_function(\n\u001b[1;32m 573\u001b[0m Tensor\u001b[38;5;241m.\u001b[39mbackward,\n\u001b[1;32m 574\u001b[0m (\u001b[38;5;28mself\u001b[39m,),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 579\u001b[0m inputs\u001b[38;5;241m=\u001b[39minputs,\n\u001b[1;32m 580\u001b[0m )\n\u001b[0;32m--> 581\u001b[0m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mautograd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 582\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\n\u001b[1;32m 583\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
- "File \u001b[0;32m~/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/torch/autograd/__init__.py:347\u001b[0m, in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[0m\n\u001b[1;32m 342\u001b[0m retain_graph \u001b[38;5;241m=\u001b[39m create_graph\n\u001b[1;32m 344\u001b[0m \u001b[38;5;66;03m# The reason we repeat the same comment below is that\u001b[39;00m\n\u001b[1;32m 345\u001b[0m \u001b[38;5;66;03m# some Python versions print out the first line of a multi-line function\u001b[39;00m\n\u001b[1;32m 346\u001b[0m \u001b[38;5;66;03m# calls in the traceback and some print out the last line\u001b[39;00m\n\u001b[0;32m--> 347\u001b[0m \u001b[43m_engine_run_backward\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 348\u001b[0m \u001b[43m \u001b[49m\u001b[43mtensors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 349\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrad_tensors_\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 350\u001b[0m \u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 351\u001b[0m \u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 352\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 353\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_unreachable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 354\u001b[0m \u001b[43m \u001b[49m\u001b[43maccumulate_grad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 355\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
- "File \u001b[0;32m~/Documents/machine_learning/ML_Notebooks/.venv/lib/python3.12/site-packages/torch/autograd/graph.py:825\u001b[0m, in \u001b[0;36m_engine_run_backward\u001b[0;34m(t_outputs, *args, **kwargs)\u001b[0m\n\u001b[1;32m 823\u001b[0m unregister_hooks \u001b[38;5;241m=\u001b[39m _register_logging_hooks_on_whole_graph(t_outputs)\n\u001b[1;32m 824\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 825\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mVariable\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_execution_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_backward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Calls into the C++ engine to run the backward pass\u001b[39;49;00m\n\u001b[1;32m 826\u001b[0m \u001b[43m \u001b[49m\u001b[43mt_outputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 827\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# Calls into the C++ engine to run the backward pass\u001b[39;00m\n\u001b[1;32m 828\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 829\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m attach_logging_hooks:\n",
- "\u001b[0;31mOutOfMemoryError\u001b[0m: CUDA out of memory. Tried to allocate 34.00 MiB. GPU 0 has a total capacity of 1.96 GiB of which 33.19 MiB is free. Including non-PyTorch memory, this process has 1.91 GiB memory in use. Of the allocated memory 1.79 GiB is allocated by PyTorch, and 65.71 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)"
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.975 0.95 0.975 0.641\n"
]
- }
- ],
- "source": [
- "# Train the model using the YAML file\n",
- "results = model.train(data=\"dataset.yaml\", epochs=100, imgsz=640, batch=16)"
- ]
- }
- ],
- "metadata": {
- "colab": {
- "authorship_tag": "ABX9TyPgZ3/nPwQl1eSxqGKyKzEu",
- "include_colab_link": true,
- "provenance": []
- },
- "kernelspec": {
- "display_name": ".venv",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.12.8"
- },
- "widgets": {
- "application/vnd.jupyter.widget-state+json": {
- "02ef3a2d28c84af98e466e399a42f8a4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
},
- "03b20ea8d48048fa9ec11862c2855386": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
},
- "04b9d680e34c4ff89552b093f68b6e89": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
},
- "053f3073855549259ec5e3ea7a2c3863": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_bd39751fd17043ec836dc677d0b34031",
- "IPY_MODEL_455cf66e4c024f79b8ec35b1705cfa2e",
- "IPY_MODEL_508574e083e74f7eb2cf14657a8bce47"
- ],
- "layout": "IPY_MODEL_1273af0e3b084d0488ce9c34fb25f805"
- }
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 2/75 4.01G 1.186 0.6815 1.092 28 640: 100%|██████████| 386/386 [00:36<00:00, 10.45it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.84it/s]"
+ ]
},
- "057301b8a5694d14bc3fcb71d0c29eaf": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.913 0.932 0.962 0.649\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 3/75 4.01G 1.206 0.6668 1.097 31 640: 100%|██████████| 386/386 [00:35<00:00, 10.85it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.00it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.955 0.952 0.979 0.668\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 4/75 4.01G 1.196 0.6361 1.095 32 640: 100%|██████████| 386/386 [00:35<00:00, 11.01it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.12it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.974 0.959 0.981 0.684\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 5/75 4.01G 1.189 0.6285 1.099 30 640: 100%|██████████| 386/386 [00:34<00:00, 11.05it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.06it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.971 0.954 0.981 0.68\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 6/75 4.01G 1.161 0.6001 1.081 25 640: 100%|██████████| 386/386 [00:35<00:00, 11.03it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.05it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.974 0.969 0.989 0.689\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 7/75 4.01G 1.145 0.5798 1.073 24 640: 100%|██████████| 386/386 [00:35<00:00, 10.88it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.14it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.974 0.967 0.989 0.691\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 8/75 4.01G 1.147 0.5732 1.073 32 640: 100%|██████████| 386/386 [00:35<00:00, 10.98it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.95it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.968 0.967 0.987 0.689\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 9/75 4.01G 1.126 0.5606 1.068 24 640: 100%|██████████| 386/386 [00:34<00:00, 11.04it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.09it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.975 0.961 0.983 0.694\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 10/75 4.01G 1.119 0.5514 1.062 28 640: 100%|██████████| 386/386 [00:34<00:00, 11.05it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.71it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.972 0.955 0.985 0.697\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 11/75 4.01G 1.124 0.5437 1.063 29 640: 100%|██████████| 386/386 [00:34<00:00, 11.04it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.03it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.973 0.967 0.988 0.69\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 12/75 4.01G 1.124 0.5377 1.062 28 640: 100%|██████████| 386/386 [00:35<00:00, 10.92it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.90it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.983 0.968 0.985 0.702\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 13/75 4.01G 1.112 0.5336 1.061 42 640: 100%|██████████| 386/386 [00:35<00:00, 10.96it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.07it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.969 0.972 0.988 0.692\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 14/75 4.01G 1.109 0.5251 1.051 27 640: 100%|██████████| 386/386 [00:34<00:00, 11.10it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.81it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.979 0.968 0.987 0.71\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 15/75 4.01G 1.109 0.5195 1.056 34 640: 100%|██████████| 386/386 [00:34<00:00, 11.09it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.32it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.977 0.969 0.988 0.717\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 16/75 4.01G 1.099 0.5134 1.055 28 640: 100%|██████████| 386/386 [00:34<00:00, 11.05it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.05it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.982 0.967 0.988 0.705\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 17/75 4.01G 1.095 0.5061 1.055 31 640: 100%|██████████| 386/386 [00:34<00:00, 11.04it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.03it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.975 0.973 0.989 0.71\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 18/75 4.01G 1.092 0.5071 1.053 30 640: 100%|██████████| 386/386 [00:35<00:00, 11.02it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.84it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.979 0.966 0.985 0.707\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 19/75 4.01G 1.081 0.5001 1.048 31 640: 100%|██████████| 386/386 [00:35<00:00, 10.80it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.17it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.973 0.98 0.987 0.701\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 20/75 4.01G 1.073 0.4922 1.045 27 640: 100%|██████████| 386/386 [00:34<00:00, 11.08it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.84it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.982 0.97 0.988 0.709\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 21/75 4.01G 1.084 0.4985 1.047 23 640: 100%|██████████| 386/386 [00:35<00:00, 10.95it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.09it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.977 0.968 0.99 0.72\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 22/75 4.01G 1.064 0.4892 1.037 33 640: 100%|██████████| 386/386 [00:35<00:00, 10.94it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.87it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.972 0.973 0.99 0.704\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 23/75 4.01G 1.078 0.4916 1.041 34 640: 100%|██████████| 386/386 [00:35<00:00, 10.98it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.24it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.979 0.971 0.99 0.725\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 24/75 4.01G 1.062 0.4822 1.037 27 640: 100%|██████████| 386/386 [00:35<00:00, 10.93it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.81it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.977 0.973 0.989 0.719\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 25/75 4.01G 1.07 0.4853 1.041 43 640: 100%|██████████| 386/386 [00:35<00:00, 10.93it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.15it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.975 0.976 0.99 0.72\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 26/75 4.01G 1.061 0.4755 1.032 36 640: 100%|██████████| 386/386 [00:35<00:00, 10.96it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.92it/s]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.975 0.978 0.991 0.727\n",
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 27/75 4.01G 1.059 0.4759 1.038 29 640: 100%|██████████| 386/386 [00:35<00:00, 11.02it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.04it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.981 0.974 0.991 0.726\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 28/75 4.01G 1.058 0.4687 1.036 22 640: 100%|██████████| 386/386 [00:35<00:00, 10.97it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.07it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.977 0.973 0.988 0.718\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 29/75 4.01G 1.055 0.4652 1.032 26 640: 100%|██████████| 386/386 [00:35<00:00, 10.93it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.07it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.982 0.974 0.99 0.725\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 30/75 4.01G 1.05 0.462 1.034 28 640: 100%|██████████| 386/386 [00:35<00:00, 10.80it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.89it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.984 0.976 0.992 0.725\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 31/75 4.01G 1.038 0.4587 1.033 22 640: 100%|██████████| 386/386 [00:35<00:00, 11.02it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.00it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.974 0.981 0.99 0.721\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 32/75 4.01G 1.043 0.4582 1.03 28 640: 100%|██████████| 386/386 [00:35<00:00, 11.02it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.11it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.977 0.973 0.991 0.722\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 33/75 4.01G 1.041 0.4539 1.022 30 640: 100%|██████████| 386/386 [00:35<00:00, 10.99it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.98it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.977 0.979 0.992 0.731\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 34/75 4.01G 1.044 0.4597 1.026 25 640: 100%|██████████| 386/386 [00:35<00:00, 10.93it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.20it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.978 0.976 0.992 0.729\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 35/75 4.01G 1.028 0.4473 1.025 35 640: 100%|██████████| 386/386 [00:35<00:00, 11.01it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.98it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.982 0.976 0.993 0.73\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 36/75 4.01G 1.034 0.4504 1.028 30 640: 100%|██████████| 386/386 [00:35<00:00, 10.86it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.11it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.983 0.975 0.989 0.725\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 37/75 4.01G 1.024 0.4418 1.024 27 640: 100%|██████████| 386/386 [00:35<00:00, 10.94it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.80it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.983 0.972 0.991 0.727\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 38/75 4.01G 1.018 0.4412 1.017 35 640: 100%|██████████| 386/386 [00:35<00:00, 10.98it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.06it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.979 0.976 0.992 0.724\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 39/75 4.01G 1.031 0.4443 1.025 33 640: 100%|██████████| 386/386 [00:35<00:00, 10.90it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.73it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.977 0.977 0.991 0.728\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 40/75 4.01G 1.026 0.4408 1.026 27 640: 100%|██████████| 386/386 [00:35<00:00, 10.98it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.22it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.976 0.977 0.991 0.73\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 41/75 4.01G 1.01 0.4325 1.016 38 640: 100%|██████████| 386/386 [00:35<00:00, 10.92it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.88it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.979 0.977 0.991 0.734\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 42/75 4.01G 1.014 0.4312 1.016 27 640: 100%|██████████| 386/386 [00:35<00:00, 10.83it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.07it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.984 0.97 0.99 0.737\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 43/75 4.01G 1.015 0.4328 1.018 26 640: 100%|██████████| 386/386 [00:34<00:00, 11.09it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.79it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.984 0.973 0.991 0.737\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 44/75 4.01G 1.009 0.4306 1.018 26 640: 100%|██████████| 386/386 [00:34<00:00, 11.04it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.19it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.982 0.976 0.992 0.734\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 45/75 4.01G 1.009 0.4255 1.012 26 640: 100%|██████████| 386/386 [00:34<00:00, 11.07it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.99it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.983 0.975 0.991 0.737\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 46/75 4.01G 1.005 0.4262 1.013 32 640: 100%|██████████| 386/386 [00:34<00:00, 11.03it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.09it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.983 0.977 0.991 0.734\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 47/75 4.01G 1.001 0.4223 1.011 30 640: 100%|██████████| 386/386 [00:34<00:00, 11.04it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.93it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.982 0.978 0.991 0.744\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 48/75 4.01G 1 0.4205 1.007 30 640: 100%|██████████| 386/386 [00:35<00:00, 10.82it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.20it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.978 0.978 0.991 0.731\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 49/75 4.01G 0.9894 0.4139 1.004 28 640: 100%|██████████| 386/386 [00:34<00:00, 11.08it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.95it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.984 0.977 0.991 0.737\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 50/75 4.01G 0.9881 0.4116 1.01 29 640: 100%|██████████| 386/386 [00:34<00:00, 11.03it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.12it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.983 0.973 0.991 0.736\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 51/75 4.01G 0.9787 0.4083 1.007 32 640: 100%|██████████| 386/386 [00:35<00:00, 10.93it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.18it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.984 0.972 0.991 0.742\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 52/75 4.01G 0.9848 0.4058 1.008 36 640: 100%|██████████| 386/386 [00:34<00:00, 11.05it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.97it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.983 0.979 0.993 0.739\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 53/75 4.01G 0.9799 0.4047 1.004 32 640: 100%|██████████| 386/386 [00:35<00:00, 10.99it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.13it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.987 0.978 0.991 0.735\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 54/75 4.01G 0.9871 0.405 1.007 37 640: 100%|██████████| 386/386 [00:35<00:00, 10.79it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.94it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.987 0.976 0.992 0.74\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 55/75 4.01G 0.9756 0.4016 1.001 27 640: 100%|██████████| 386/386 [00:34<00:00, 11.08it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.02it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.983 0.978 0.992 0.736\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 56/75 4.01G 0.9782 0.4004 1 22 640: 100%|██████████| 386/386 [00:35<00:00, 10.99it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.97it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.985 0.978 0.992 0.741\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 57/75 4.01G 0.9762 0.4005 0.9995 40 640: 100%|██████████| 386/386 [00:34<00:00, 11.06it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.10it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.988 0.977 0.993 0.739\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 58/75 4.01G 0.9765 0.3915 0.9991 39 640: 100%|██████████| 386/386 [00:34<00:00, 11.07it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.96it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.986 0.977 0.992 0.74\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 59/75 4.01G 0.9694 0.3908 0.998 31 640: 100%|██████████| 386/386 [00:35<00:00, 10.99it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.19it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.984 0.978 0.992 0.739\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 60/75 4.01G 0.9543 0.3885 0.9944 36 640: 100%|██████████| 386/386 [00:35<00:00, 10.87it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.94it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.982 0.982 0.992 0.743\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 61/75 4.01G 0.9681 0.3927 0.9933 28 640: 100%|██████████| 386/386 [00:35<00:00, 11.01it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.07it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.983 0.978 0.992 0.741\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 62/75 4.01G 0.9578 0.3859 0.9942 26 640: 100%|██████████| 386/386 [00:35<00:00, 10.90it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.94it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.985 0.98 0.992 0.74\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 63/75 4.01G 0.9556 0.383 0.9948 23 640: 100%|██████████| 386/386 [00:35<00:00, 11.01it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.16it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.985 0.98 0.992 0.743\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 64/75 4.01G 0.9538 0.3849 0.994 36 640: 100%|██████████| 386/386 [00:35<00:00, 11.02it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.91it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.986 0.978 0.992 0.743\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 65/75 4.01G 0.9475 0.3823 0.9894 35 640: 100%|██████████| 386/386 [00:35<00:00, 10.98it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.09it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.983 0.978 0.992 0.739\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Closing dataloader mosaic\n",
+ "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01, num_output_channels=3, method='weighted_average'), CLAHE(p=0.01, clip_limit=(1.0, 4.0), tile_grid_size=(8, 8))\n",
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 66/75 4.01G 0.9412 0.3463 1.002 16 640: 100%|██████████| 386/386 [00:35<00:00, 10.83it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.94it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.985 0.978 0.991 0.737\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 67/75 4.01G 0.9393 0.3446 1.005 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.16it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.07it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.986 0.976 0.991 0.74\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 68/75 4.01G 0.933 0.3398 1.001 16 640: 100%|██████���███| 386/386 [00:34<00:00, 11.25it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.02it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.984 0.98 0.991 0.743\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 69/75 4.01G 0.9288 0.3388 0.9981 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.24it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.99it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.988 0.976 0.992 0.741\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 70/75 4.01G 0.9258 0.3363 0.9976 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.24it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.12it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.987 0.977 0.992 0.742\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 71/75 4.01G 0.9173 0.3323 0.9919 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.24it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.98it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.989 0.974 0.991 0.743\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 72/75 4.01G 0.9119 0.3303 0.9896 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.06it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.04it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.991 0.972 0.992 0.743\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 73/75 4.01G 0.9126 0.3291 0.9877 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.20it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.99it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.99 0.974 0.992 0.744\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 74/75 4.01G 0.9078 0.3285 0.9853 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.16it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.14it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.99 0.974 0.992 0.744\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 75/75 4.01G 0.9056 0.3249 0.9883 16 640: 100%|██████████| 386/386 [00:34<00:00, 11.22it/s]\n",
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 9.08it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.99 0.972 0.991 0.744\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "75 epochs completed in 0.876 hours.\n",
+ "Optimizer stripped from runs/detect/train3/weights/last.pt, 6.2MB\n",
+ "Optimizer stripped from runs/detect/train3/weights/best.pt, 6.2MB\n",
+ "\n",
+ "Validating runs/detect/train3/weights/best.pt...\n",
+ "Ultralytics 8.3.68 🚀 Python-3.11.11 torch-2.5.1+cu121 CUDA:0 (NVIDIA A100-SXM4-40GB, 40514MiB)\n",
+ "Model summary (fused): 168 layers, 3,005,843 parameters, 0 gradients, 8.1 GFLOPs\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 56/56 [00:06<00:00, 8.10it/s]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " all 1765 1765 0.99 0.974 0.993 0.744\n",
+ "Speed: 0.1ms preprocess, 0.4ms inference, 0.0ms loss, 0.8ms postprocess per image\n",
+ "Results saved to \u001b[1mruns/detect/train3\u001b[0m\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Train the model using the YAML file\n",
+ "results = model.train(data=\"dataset.yaml\", epochs=75, imgsz=640, batch=16)"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "authorship_tag": "ABX9TyNbZFJzXnxIVensm8YYcslN",
+ "gpuType": "A100",
+ "include_colab_link": true,
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "name": "python"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "031ad2790ce14930a576fbb5a70aa6ac": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
@@ -7054,14 +3289,38 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_59facccfa2f44d87a5e14d42b2c5b112",
- "IPY_MODEL_48cf627fbb9243c7b52a4b9f669b978c",
- "IPY_MODEL_254ed912e97c42e589c81320bdb9c41f"
+ "IPY_MODEL_519f5224463440b3bc68e29278358fb8",
+ "IPY_MODEL_a8411f4b2e144c4c9cbb02333ecc9cf6",
+ "IPY_MODEL_1b3e894a8e4940189a407fca1f2d9928"
],
- "layout": "IPY_MODEL_c3b871e061134a5f9561c8d473a46964"
+ "layout": "IPY_MODEL_6be43682c0b34f79b96f491140b3ca08"
}
},
- "0728467c6fc04a8bb5ef2abb6acca3d3": {
+ "031ced2c6b694a3b8776505f310cce41": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4a029944d7af46edbe012b98304991c7",
+ "max": 22580639,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_206ed7f680fa4221b5aab3e43f178a2b",
+ "value": 22580639
+ }
+ },
+ "045c5a90a4e44c62bff82074ea0a4206": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -7076,14 +3335,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_ea2e17d8f56f4e918ef714cb3e70c840",
- "IPY_MODEL_46123093d57f45af930f396d5147c91b",
- "IPY_MODEL_3fa50ca858394748b2394a5ff78ae32a"
+ "IPY_MODEL_b79e766f1f8e4542b3570ab748546a10",
+ "IPY_MODEL_af1f4069ccaf4bb3a827598a2766b756",
+ "IPY_MODEL_9381a9a338a9490d82ebabca0381a53e"
],
- "layout": "IPY_MODEL_8ab0ad4afb054b98b39cbf4a05379d14"
+ "layout": "IPY_MODEL_425e7bd48ff4460383de2ab0eb38967e"
}
},
- "0c4018c823ff47de9e365fbc83a1c22f": {
+ "0797084f7647413ab9a504b6593c0a32": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7135,7 +3394,7 @@
"width": null
}
},
- "0ee94c205ab8405ebc1fe535a51823d9": {
+ "0834f8a046f64c6e8e7f90a0dc5dce98": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7187,7 +3446,7 @@
"width": null
}
},
- "1273af0e3b084d0488ce9c34fb25f805": {
+ "0ba67d6a1251492ab1c52bd32fff16cf": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7239,37 +3498,23 @@
"width": null
}
},
- "1348742c59ba4a00aed3f1c10fc31fb8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "13eb3bf7aa4c456d8ecabf7b1463be92": {
+ "0c994560365a4a34b70e924a74a735fc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "14fe10b7a9a24d8799aa1c6e044de554": {
+ "0e351ff0b22d4aada497b0ca28c176c0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -7285,15 +3530,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6a7e26dcba854bca8504a57aa17e391c",
- "max": 168116763,
+ "layout": "IPY_MODEL_2d51a4cc03804634a091282f126af34e",
+ "max": 6109,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_a3119fce6b6942f5b01e7d3cb5f0af27",
- "value": 168116763
+ "style": "IPY_MODEL_3bda2f93d975401fa19f19bdfa50cbc9",
+ "value": 6109
}
},
- "1ea611c39ee74ede859f99a672709e15": {
+ "13dcd001c23b48deb862e0e51513e2f7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7345,101 +3590,7 @@
"width": null
}
},
- "1fc97d1dd8a44c6ea5eec0008b9d7747": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "254ed912e97c42e589c81320bdb9c41f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_9390dfa535a443b789930a452ebc334a",
- "placeholder": "",
- "style": "IPY_MODEL_13eb3bf7aa4c456d8ecabf7b1463be92",
- "value": " 46.3M/46.3M [00:00<00:00, 94.0MB/s]"
- }
- },
- "294b9c9a60664948a694b94d65a6e3ee": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_8ab46df36bc0484188b7dd31d7e1b069",
- "placeholder": "",
- "style": "IPY_MODEL_b0ca058cab35428e9b845bd5dfdefdc7",
- "value": " 1.88k/1.88k [00:00<00:00, 104kB/s]"
- }
- },
- "2ebd4788f82d4d6f89cf08b89dc071bf": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_353da333b46a4487800c2243e4305153",
- "placeholder": "",
- "style": "IPY_MODEL_c6dc7afc53094fb8a630dd9ca41e6c48",
- "value": " 6.11k/6.11k [00:00<00:00, 334kB/s]"
- }
- },
- "347eb74722f74db7952ceb378885b5a4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "353da333b46a4487800c2243e4305153": {
+ "148b98c041434feeb0317d1011f477f3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7491,80 +3642,59 @@
"width": null
}
},
- "3967f6d26e3c4a27b5a9b073b3cfa819": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "3982e7688d694e4e8e209cb166bf87c2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "17e2fbaf98964eb9bf1b757d8b38cc98": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "3ae35a6c4fa048b495ebe5a477de961b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f765b3535f8d48f987ff7f0d1ed0d27e",
- "placeholder": "",
- "style": "IPY_MODEL_02ef3a2d28c84af98e466e399a42f8a4",
- "value": "license-plate-object-detection.py: 100%"
- }
- },
- "3fa50ca858394748b2394a5ff78ae32a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0c4018c823ff47de9e365fbc83a1c22f",
- "placeholder": "",
- "style": "IPY_MODEL_1fc97d1dd8a44c6ea5eec0008b9d7747",
- "value": " 22.6M/22.6M [00:00<00:00, 97.0MB/s]"
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "414adc5bc471472ab50a847244ea1151": {
+ "196b240165764c24a538011e5e621fe8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -7579,13 +3709,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_fd4ee64461ab4625b88ce785d089343d",
+ "layout": "IPY_MODEL_148b98c041434feeb0317d1011f477f3",
"placeholder": "",
- "style": "IPY_MODEL_4924c3c2633a422390b2a8355d0f21e3",
- "value": " 882/882 [00:00<00:00, 7847.12 examples/s]"
+ "style": "IPY_MODEL_7ab18382ff57418e807e29e7eb29b5f9",
+ "value": "0000.parquet: 100%"
}
},
- "442217a94c7642588b62016d06d6daab": {
+ "1b3e894a8e4940189a407fca1f2d9928": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -7600,139 +3730,71 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_b13dffe8b9a445a4954f61b5aab10adc",
+ "layout": "IPY_MODEL_491b7bdb3768406c85fe5116b72720ad",
"placeholder": "",
- "style": "IPY_MODEL_5280eb3992bb4ddd87ab4122ec6f89a0",
- "value": "Generating train split: 100%"
- }
- },
- "455cf66e4c024f79b8ec35b1705cfa2e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_72ce547f43b844319e3a4e0ec71e5131",
- "max": 1765,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_9e9bc0853164443ca02800c42bc7eed6",
- "value": 1765
- }
- },
- "458552538dc749178ea12de9e16d20e0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "style": "IPY_MODEL_c90495736064439d951a9e3a99d1c69b",
+ "value": " 6176/6176 [00:00<00:00, 14923.28 examples/s]"
}
},
- "46123093d57f45af930f396d5147c91b": {
+ "1d5bd353a7764b078902a3626f4db345": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_f0fdd04aa17741988080beb831fc6882",
- "max": 22580639,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_bb05dfeca514492681181ba56a51225f",
- "value": 22580639
+ "layout": "IPY_MODEL_b6f6ad3a8c204a08b1bd04539938f190",
+ "placeholder": "",
+ "style": "IPY_MODEL_f0b5371a218449ac8a09a750d985930b",
+ "value": "Generating test split: 100%"
}
},
- "48cf627fbb9243c7b52a4b9f669b978c": {
+ "1d83fe7833e64b3a9ff816b9a72f30ab": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_fdababc887cc4ad99bcc5393b6873a81",
- "max": 46289493,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_3967f6d26e3c4a27b5a9b073b3cfa819",
- "value": 46289493
+ "layout": "IPY_MODEL_0834f8a046f64c6e8e7f90a0dc5dce98",
+ "placeholder": "",
+ "style": "IPY_MODEL_a486f99686834a7c8ca1819b93d8a017",
+ "value": " 1765/1765 [00:00<00:00, 18221.74 examples/s]"
}
},
- "4924c3c2633a422390b2a8355d0f21e3": {
+ "206ed7f680fa4221b5aab3e43f178a2b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "4a57bf2d79874b4f9cf78eb604556f67": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_759fd1dedf694f57b1bd23309e7749d8",
- "max": 1878,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_4fa8ea4ec26d4d60983374fa44a0df76",
- "value": 1878
- }
- },
- "4fa8ea4ec26d4d60983374fa44a0df76": {
+ "224cc58849bc42f2b5a883e06616a3da": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -7748,64 +3810,111 @@
"description_width": ""
}
},
- "508574e083e74f7eb2cf14657a8bce47": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ad7fdb6be4624917b0c4e93574881a31",
- "placeholder": "",
- "style": "IPY_MODEL_458552538dc749178ea12de9e16d20e0",
- "value": " 1765/1765 [00:00<00:00, 4102.32 examples/s]"
- }
- },
- "5280eb3992bb4ddd87ab4122ec6f89a0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "247ca90330cf4f5eb6e19556ad4a1e8c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "59facccfa2f44d87a5e14d42b2c5b112": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "281b7dcb7f9c49dd9b0f37d08a4c7128": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d8e237beb6114ceeb81d216c2b920570",
- "placeholder": "",
- "style": "IPY_MODEL_e3f6a23964704488bac6372cb5e94bc3",
- "value": "0000.parquet: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "5e57bf8b48af4ce1b9ddf7f95359aec5": {
+ "2d51a4cc03804634a091282f126af34e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7857,53 +3966,38 @@
"width": null
}
},
- "5fd9fbac8ae14bcc9c3becb17980589c": {
+ "2ee4059e62b5489b8ec887bf2ea99430": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_646934b1a9c5438eba158d47ec8e804f",
- "max": 6109,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_347eb74722f74db7952ceb378885b5a4",
- "value": 6109
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "5fe19a732e96458d9da6c04951f65792": {
+ "3ab0bcbd68294e99b34faf3fc5f02b53": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_98f1dfdadd5440afa23fa793c5982b29",
- "IPY_MODEL_14fe10b7a9a24d8799aa1c6e044de554",
- "IPY_MODEL_80598cce422d4892a0aded2f1b78ec7e"
- ],
- "layout": "IPY_MODEL_85e1150e38e14575acec852e11e5ea43"
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "60a3b53107214e319bc9f72f128d7e9a": {
+ "3bda2f93d975401fa19f19bdfa50cbc9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -7919,7 +4013,7 @@
"description_width": ""
}
},
- "63755d6d09744efcbc63297372e1d679": {
+ "404f2f2822bb4d1fa0b2316def55f9c9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7971,7 +4065,7 @@
"width": null
}
},
- "646934b1a9c5438eba158d47ec8e804f": {
+ "425e7bd48ff4460383de2ab0eb38967e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -8023,7 +4117,31 @@
"width": null
}
},
- "6a7e26dcba854bca8504a57aa17e391c": {
+ "43f8f78aeae04edda400b863b2c6083b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ce3185a77edd4e54b5246f295b95f135",
+ "max": 168116763,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_224cc58849bc42f2b5a883e06616a3da",
+ "value": 168116763
+ }
+ },
+ "468d0430026b4070b3897267fa993594": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -8075,28 +4193,7 @@
"width": null
}
},
- "6c6ee1eec7764ab88d97dcdd3b823411": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d237c86e9087450bbba6b8bd48485dc6",
- "placeholder": "",
- "style": "IPY_MODEL_bb59949fafd94785bae45321e0711837",
- "value": "README.md: 100%"
- }
- },
- "72ce547f43b844319e3a4e0ec71e5131": {
+ "491b7bdb3768406c85fe5116b72720ad": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -8148,28 +4245,7 @@
"width": null
}
},
- "7457284827654633b7abb74a98428ecf": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d7e0bebda4854874ae4288395d554412",
- "placeholder": "",
- "style": "IPY_MODEL_03b20ea8d48048fa9ec11862c2855386",
- "value": " 6176/6176 [00:01<00:00, 3871.21 examples/s]"
- }
- },
- "759fd1dedf694f57b1bd23309e7749d8": {
+ "4a029944d7af46edbe012b98304991c7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -8221,7 +4297,73 @@
"width": null
}
},
- "75d2c6bf23b0484086d5020a6d6c3929": {
+ "4e36f85990a04502a5781f5d8c2bfb71": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_404f2f2822bb4d1fa0b2316def55f9c9",
+ "max": 46289493,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_2ee4059e62b5489b8ec887bf2ea99430",
+ "value": 46289493
+ }
+ },
+ "519f5224463440b3bc68e29278358fb8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_13dcd001c23b48deb862e0e51513e2f7",
+ "placeholder": "",
+ "style": "IPY_MODEL_ae4cc09971e44debaec05ae39e9930a3",
+ "value": "Generating train split: 100%"
+ }
+ },
+ "51a57359a0f948989a236681e7e0288c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f3156888b2644b9c88284f5fbe2f6883",
+ "placeholder": "",
+ "style": "IPY_MODEL_3ab0bcbd68294e99b34faf3fc5f02b53",
+ "value": "Generating validation split: 100%"
+ }
+ },
+ "51f0663f1b79496cbe8ce3d38d1ef5a4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -8237,81 +4379,28 @@
"description_width": ""
}
},
- "7d3fd3314d9d4d1e90d8820a79c9a954": {
+ "52125a8e46314bd7aeb8455db82d9f0b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_c70e52edfe3e4222b51b7542424a4c37",
- "IPY_MODEL_f39c430c793943db88fa8e1ea26681d9",
- "IPY_MODEL_414adc5bc471472ab50a847244ea1151"
- ],
- "layout": "IPY_MODEL_fbf960e037324895801507bb74b6f401"
- }
- },
- "7ddcffa3be8349dea54077b2abeee3ad": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_247ca90330cf4f5eb6e19556ad4a1e8c",
+ "placeholder": "",
+ "style": "IPY_MODEL_7be0a5449c2b4d63b12b72afbb395dc4",
+ "value": " 46.3M/46.3M [00:00<00:00, 227MB/s]"
}
},
- "80598cce422d4892a0aded2f1b78ec7e": {
+ "58f60d66a8a1475c9b9c00c2e5ee23b9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -8326,65 +4415,43 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_63755d6d09744efcbc63297372e1d679",
+ "layout": "IPY_MODEL_f42284f2326542f8bd723d612f9d1958",
"placeholder": "",
- "style": "IPY_MODEL_a333e2d5bb284c5087f86ed4655268b9",
- "value": " 168M/168M [00:01<00:00, 173MB/s]"
+ "style": "IPY_MODEL_cf76ed363c8c4803adfdd93ad76eaf74",
+ "value": " 6.11k/6.11k [00:00<00:00, 561kB/s]"
}
},
- "85e1150e38e14575acec852e11e5ea43": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "5ad4797273bc411489a835b267c999be": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5efea1066ce24da3a99aba14dfce9783": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "8ab0ad4afb054b98b39cbf4a05379d14": {
+ "6be43682c0b34f79b96f491140b3ca08": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -8436,7 +4503,29 @@
"width": null
}
},
- "8ab46df36bc0484188b7dd31d7e1b069": {
+ "6e8a5580a981464e842c56ee88fdc29d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1d5bd353a7764b078902a3626f4db345",
+ "IPY_MODEL_99ffb36c5c4f47769e1661bfcee86808",
+ "IPY_MODEL_efd09f30af42475dad4a8d14423d9f57"
+ ],
+ "layout": "IPY_MODEL_c9cc9da8696f4f86b791d515e3f94af1"
+ }
+ },
+ "71e2028d2470473286b6ddc41e2a9300": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -8488,29 +4577,7 @@
"width": null
}
},
- "8b2de2230ec3476b90d6803764c0365a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_442217a94c7642588b62016d06d6daab",
- "IPY_MODEL_db6dfa339ecb4b06afc9a4b5b8d57c83",
- "IPY_MODEL_7457284827654633b7abb74a98428ecf"
- ],
- "layout": "IPY_MODEL_fceb8ef4dff9473a854d223958f0770f"
- }
- },
- "9390dfa535a443b789930a452ebc334a": {
+ "743d23f277814df7acf58e99769fa995": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -8562,60 +4629,44 @@
"width": null
}
},
- "98f1dfdadd5440afa23fa793c5982b29": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_7ddcffa3be8349dea54077b2abeee3ad",
- "placeholder": "",
- "style": "IPY_MODEL_b4806effde704aeead948920debebcdd",
- "value": "0000.parquet: 100%"
- }
- },
- "9e9bc0853164443ca02800c42bc7eed6": {
+ "7697bd1df7a6462284177dfa8ee4d24c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "a3119fce6b6942f5b01e7d3cb5f0af27": {
+ "78ace055e9fb4d4f893f636f81c37c58": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_d39b084356424c76a031b3353f406f92",
+ "IPY_MODEL_4e36f85990a04502a5781f5d8c2bfb71",
+ "IPY_MODEL_52125a8e46314bd7aeb8455db82d9f0b"
+ ],
+ "layout": "IPY_MODEL_eed222dabb214d3d8c53e74900a1cd5e"
}
},
- "a333e2d5bb284c5087f86ed4655268b9": {
+ "7ab18382ff57418e807e29e7eb29b5f9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -8630,7 +4681,7 @@
"description_width": ""
}
},
- "a80cd47fa08940e8a4e8b41a4ac689cf": {
+ "7be0a5449c2b4d63b12b72afbb395dc4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -8645,7 +4696,7 @@
"description_width": ""
}
},
- "ad7fdb6be4624917b0c4e93574881a31": {
+ "7d5ab77c50b84eb38e3a2c22a92ca88e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -8697,22 +4748,7 @@
"width": null
}
},
- "b0ca058cab35428e9b845bd5dfdefdc7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "b13dffe8b9a445a4954f61b5aab10adc": {
+ "7d66f81978ea48e3aba3abe4bc34a362": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -8764,7 +4800,118 @@
"width": null
}
},
- "b4806effde704aeead948920debebcdd": {
+ "8a8a814623b1471f8d9b3c49c72592ef": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e3321090379145e180e46744ce050c89",
+ "IPY_MODEL_0e351ff0b22d4aada497b0ca28c176c0",
+ "IPY_MODEL_58f60d66a8a1475c9b9c00c2e5ee23b9"
+ ],
+ "layout": "IPY_MODEL_e6c66c0d935d4d978e8f80d3186688dd"
+ }
+ },
+ "9381a9a338a9490d82ebabca0381a53e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7d5ab77c50b84eb38e3a2c22a92ca88e",
+ "placeholder": "",
+ "style": "IPY_MODEL_eb91f17764f2478cb897e741eeae58ca",
+ "value": " 1.88k/1.88k [00:00<00:00, 101kB/s]"
+ }
+ },
+ "95e2c81b520742bbb26480a87d26daaa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_51a57359a0f948989a236681e7e0288c",
+ "IPY_MODEL_ef900119072b40439fc89c63a939e766",
+ "IPY_MODEL_1d83fe7833e64b3a9ff816b9a72f30ab"
+ ],
+ "layout": "IPY_MODEL_468d0430026b4070b3897267fa993594"
+ }
+ },
+ "99ffb36c5c4f47769e1661bfcee86808": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0ba67d6a1251492ab1c52bd32fff16cf",
+ "max": 882,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a7f348ab9b4840529cfcb7baa8d5eba0",
+ "value": 882
+ }
+ },
+ "9b5bebb7d4d44af4b466e152520f46b0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_196b240165764c24a538011e5e621fe8",
+ "IPY_MODEL_031ced2c6b694a3b8776505f310cce41",
+ "IPY_MODEL_dbcbc21e84c2408ebae6fd497c82bd9f"
+ ],
+ "layout": "IPY_MODEL_0797084f7647413ab9a504b6593c0a32"
+ }
+ },
+ "9b8d306074524c4b8f3cadaa569035ca": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -8779,45 +4926,37 @@
"description_width": ""
}
},
- "bb05dfeca514492681181ba56a51225f": {
+ "9c89394e72e64c1e8d66ac67b5b97f00": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "bb216713afad4ec7b55e9382498e8a93": {
+ "a486f99686834a7c8ca1819b93d8a017": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_3ae35a6c4fa048b495ebe5a477de961b",
- "IPY_MODEL_5fd9fbac8ae14bcc9c3becb17980589c",
- "IPY_MODEL_2ebd4788f82d4d6f89cf08b89dc071bf"
- ],
- "layout": "IPY_MODEL_04b9d680e34c4ff89552b093f68b6e89"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "bb59949fafd94785bae45321e0711837": {
+ "a60a905fca554d6dbc8e0bc0d7ebed0b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -8832,28 +4971,23 @@
"description_width": ""
}
},
- "bd39751fd17043ec836dc677d0b34031": {
+ "a7f348ab9b4840529cfcb7baa8d5eba0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e1fa41a7055c4595a0334b08a80c0f77",
- "placeholder": "",
- "style": "IPY_MODEL_1348742c59ba4a00aed3f1c10fc31fb8",
- "value": "Generating validation split: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "c3b871e061134a5f9561c8d473a46964": {
+ "a802f9c6e8444c11b1bbef4c0cb3f1a3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -8905,43 +5039,31 @@
"width": null
}
},
- "c6dc7afc53094fb8a630dd9ca41e6c48": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "c70e52edfe3e4222b51b7542424a4c37": {
+ "a8411f4b2e144c4c9cbb02333ecc9cf6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5e57bf8b48af4ce1b9ddf7f95359aec5",
- "placeholder": "",
- "style": "IPY_MODEL_a80cd47fa08940e8a4e8b41a4ac689cf",
- "value": "Generating test split: 100%"
+ "layout": "IPY_MODEL_cc6bca626dbf4b1a8476616781d37e91",
+ "max": 6176,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0c994560365a4a34b70e924a74a735fc",
+ "value": 6176
}
},
- "c958344979d448c9b452c7ef99d0da1d": {
+ "a945dd404eeb4b418051e33aa3985a7e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -8993,7 +5115,46 @@
"width": null
}
},
- "d237c86e9087450bbba6b8bd48485dc6": {
+ "ae4cc09971e44debaec05ae39e9930a3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "af1f4069ccaf4bb3a827598a2766b756": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7d66f81978ea48e3aba3abe4bc34a362",
+ "max": 1878,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_51f0663f1b79496cbe8ce3d38d1ef5a4",
+ "value": 1878
+ }
+ },
+ "b6f6ad3a8c204a08b1bd04539938f190": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -9045,7 +5206,28 @@
"width": null
}
},
- "d7e0bebda4854874ae4288395d554412": {
+ "b79e766f1f8e4542b3570ab748546a10": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_743d23f277814df7acf58e99769fa995",
+ "placeholder": "",
+ "style": "IPY_MODEL_a60a905fca554d6dbc8e0bc0d7ebed0b",
+ "value": "README.md: 100%"
+ }
+ },
+ "b9729d44ca98490ba230eb4c60444ea5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -9097,7 +5279,22 @@
"width": null
}
},
- "d7fd1c9f3e2a4da6958249e8f146d887": {
+ "c90495736064439d951a9e3a99d1c69b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c9cc9da8696f4f86b791d515e3f94af1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -9149,7 +5346,28 @@
"width": null
}
},
- "d8e237beb6114ceeb81d216c2b920570": {
+ "c9f48974fd874e5c925f631fbbfd5237": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a945dd404eeb4b418051e33aa3985a7e",
+ "placeholder": "",
+ "style": "IPY_MODEL_9b8d306074524c4b8f3cadaa569035ca",
+ "value": "0000.parquet: 100%"
+ }
+ },
+ "cc6bca626dbf4b1a8476616781d37e91": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -9201,31 +5419,7 @@
"width": null
}
},
- "db6dfa339ecb4b06afc9a4b5b8d57c83": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c958344979d448c9b452c7ef99d0da1d",
- "max": 6176,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_75d2c6bf23b0484086d5020a6d6c3929",
- "value": 6176
- }
- },
- "e1fa41a7055c4595a0334b08a80c0f77": {
+ "ce3185a77edd4e54b5246f295b95f135": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -9277,7 +5471,22 @@
"width": null
}
},
- "e3f6a23964704488bac6372cb5e94bc3": {
+ "cf76ed363c8c4803adfdd93ad76eaf74": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d125618b3bb74b638ee02d7871cc82b9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -9292,7 +5501,7 @@
"description_width": ""
}
},
- "ea2e17d8f56f4e918ef714cb3e70c840": {
+ "d39b084356424c76a031b3353f406f92": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -9307,13 +5516,55 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_1ea611c39ee74ede859f99a672709e15",
+ "layout": "IPY_MODEL_a802f9c6e8444c11b1bbef4c0cb3f1a3",
"placeholder": "",
- "style": "IPY_MODEL_3982e7688d694e4e8e209cb166bf87c2",
+ "style": "IPY_MODEL_d125618b3bb74b638ee02d7871cc82b9",
"value": "0000.parquet: 100%"
}
},
- "f0fdd04aa17741988080beb831fc6882": {
+ "dbcbc21e84c2408ebae6fd497c82bd9f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_17e2fbaf98964eb9bf1b757d8b38cc98",
+ "placeholder": "",
+ "style": "IPY_MODEL_9c89394e72e64c1e8d66ac67b5b97f00",
+ "value": " 22.6M/22.6M [00:00<00:00, 220MB/s]"
+ }
+ },
+ "e3321090379145e180e46744ce050c89": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_281b7dcb7f9c49dd9b0f37d08a4c7128",
+ "placeholder": "",
+ "style": "IPY_MODEL_5efea1066ce24da3a99aba14dfce9783",
+ "value": "license-plate-object-detection.py: 100%"
+ }
+ },
+ "e6c66c0d935d4d978e8f80d3186688dd": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -9365,53 +5616,38 @@
"width": null
}
},
- "f110bf4cec204815b518dcd7262f4110": {
+ "ea096a2828f94674979b9c77fc1372b0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_6c6ee1eec7764ab88d97dcdd3b823411",
- "IPY_MODEL_4a57bf2d79874b4f9cf78eb604556f67",
- "IPY_MODEL_294b9c9a60664948a694b94d65a6e3ee"
- ],
- "layout": "IPY_MODEL_d7fd1c9f3e2a4da6958249e8f146d887"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "f39c430c793943db88fa8e1ea26681d9": {
+ "eb91f17764f2478cb897e741eeae58ca": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0ee94c205ab8405ebc1fe535a51823d9",
- "max": 882,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_60a3b53107214e319bc9f72f128d7e9a",
- "value": 882
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "f765b3535f8d48f987ff7f0d1ed0d27e": {
+ "ee442a157c72446f9db8359ca590b202": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -9463,7 +5699,7 @@
"width": null
}
},
- "fbf960e037324895801507bb74b6f401": {
+ "eed222dabb214d3d8c53e74900a1cd5e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -9515,7 +5751,67 @@
"width": null
}
},
- "fceb8ef4dff9473a854d223958f0770f": {
+ "ef900119072b40439fc89c63a939e766": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ee442a157c72446f9db8359ca590b202",
+ "max": 1765,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ea096a2828f94674979b9c77fc1372b0",
+ "value": 1765
+ }
+ },
+ "efd09f30af42475dad4a8d14423d9f57": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_71e2028d2470473286b6ddc41e2a9300",
+ "placeholder": "",
+ "style": "IPY_MODEL_7697bd1df7a6462284177dfa8ee4d24c",
+ "value": " 882/882 [00:00<00:00, 17725.38 examples/s]"
+ }
+ },
+ "f0b5371a218449ac8a09a750d985930b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f3156888b2644b9c88284f5fbe2f6883": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -9567,7 +5863,7 @@
"width": null
}
},
- "fd4ee64461ab4625b88ce785d089343d": {
+ "f42284f2326542f8bd723d612f9d1958": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -9619,7 +5915,50 @@
"width": null
}
},
- "fdababc887cc4ad99bcc5393b6873a81": {
+ "f6abb798974d491c8e0d82f2b101d55e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b9729d44ca98490ba230eb4c60444ea5",
+ "placeholder": "",
+ "style": "IPY_MODEL_5ad4797273bc411489a835b267c999be",
+ "value": " 168M/168M [00:01<00:00, 210MB/s]"
+ }
+ },
+ "f735de1ab77140dbb4c72207b8ebb514": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c9f48974fd874e5c925f631fbbfd5237",
+ "IPY_MODEL_43f8f78aeae04edda400b863b2c6083b",
+ "IPY_MODEL_f6abb798974d491c8e0d82f2b101d55e"
+ ],
+ "layout": "IPY_MODEL_fe34a93384d04276ab176dbb51276a31"
+ }
+ },
+ "fe34a93384d04276ab176dbb51276a31": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",