import os import torch from load_utils import load_model from guided_diffusion import dist_util from guided_diffusion.gaussian_diffusion import _encode, _decode from guided_diffusion.pr_datasets_all import load_data from tqdm import tqdm from guided_diffusion.midi_util import visualize_full_piano_roll, save_piano_roll_midi from music_rule_guidance import music_rules import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") plt.rcParams["figure.figsize"] = (20,3) plt.rcParams['figure.dpi'] = 300 plt.rcParams['savefig.dpi'] = 300 MODEL_NAME = 'kl/f8-all-onset' MODEL_CKPT = 'taming-transformers/checkpoints/all_onset/epoch_14.ckpt' TOTAL_BATCH = 256 def main(): data = load_data( data_dir='datasets/all-len-40-gap-16-no-empty_train.csv', batch_size=32, class_cond=True, image_size=1024, deterministic=False, fs=100, ) embed_model = load_model(MODEL_NAME, MODEL_CKPT) del embed_model.loss embed_model.to(dist_util.dev()) embed_model.eval() z_list = [] with torch.no_grad(): for _ in tqdm(range(TOTAL_BATCH)): batch, cond = next(data) batch = batch.to(dist_util.dev()) enc = _encode(batch, embed_model, scale_factor=1.) z_list.append(enc.cpu()) latents = torch.concat(z_list, dim=0) scale_factor = 1. / latents.flatten().std().item() print(f"scale_factor: {scale_factor}") print("done") if __name__ == "__main__": main()