A Quick-trained Whisper-Small model for Nan-TW (閩南話/台語) #JL

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 (nan-tw) dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7699
  • Cer: 138.9186

Transcription Example

(Example Source: https://sutian.moe.edu.tw/zh-hant/su/27169/)
Original sentence: 萬事起頭難。
Inference by Whisper-Small: บันซู ขี้เท่าหลัน
Inference by this model: 萬事起頭難

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.3511 2.9240 1000 0.7512 125.6361
0.0117 5.8480 2000 0.7479 141.2850
0.001 8.7719 3000 0.7629 136.0814
0.0006 11.6959 4000 0.7699 138.9186

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
35
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for 6x16/whisper-small-nan-tw-quicktrain

Finetuned
(2573)
this model

Dataset used to train 6x16/whisper-small-nan-tw-quicktrain

Space using 6x16/whisper-small-nan-tw-quicktrain 1