See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: echarlaix/tiny-random-PhiForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- df4145ffec439e54_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/df4145ffec439e54_train_data.json
type:
field_instruction: text
field_output: text_ja
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/a20c3179-6bc5-4fb9-a229-a853a34533ba
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4679
micro_batch_size: 4
mlflow_experiment_name: /tmp/df4145ffec439e54_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c30de9d5-9d24-44e1-9b62-deb3229d1fce
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c30de9d5-9d24-44e1-9b62-deb3229d1fce
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
a20c3179-6bc5-4fb9-a229-a853a34533ba
This model is a fine-tuned version of echarlaix/tiny-random-PhiForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 6.6151
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 4679
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
6.9446 | 0.0004 | 1 | 6.9443 |
6.6666 | 0.0384 | 100 | 6.6708 |
6.6741 | 0.0768 | 200 | 6.6562 |
6.642 | 0.1152 | 300 | 6.6517 |
6.6381 | 0.1536 | 400 | 6.6443 |
6.6413 | 0.1920 | 500 | 6.6408 |
6.6588 | 0.2303 | 600 | 6.6375 |
6.6395 | 0.2687 | 700 | 6.6342 |
6.6493 | 0.3071 | 800 | 6.6328 |
6.6319 | 0.3455 | 900 | 6.6312 |
6.6399 | 0.3839 | 1000 | 6.6303 |
6.6457 | 0.4223 | 1100 | 6.6292 |
6.6224 | 0.4607 | 1200 | 6.6274 |
6.6191 | 0.4991 | 1300 | 6.6265 |
6.6389 | 0.5375 | 1400 | 6.6260 |
6.6216 | 0.5759 | 1500 | 6.6247 |
6.6458 | 0.6143 | 1600 | 6.6238 |
6.6266 | 0.6527 | 1700 | 6.6224 |
6.647 | 0.6910 | 1800 | 6.6211 |
6.6328 | 0.7294 | 1900 | 6.6197 |
6.6377 | 0.7678 | 2000 | 6.6186 |
6.6258 | 0.8062 | 2100 | 6.6181 |
6.6202 | 0.8446 | 2200 | 6.6180 |
6.6182 | 0.8830 | 2300 | 6.6173 |
6.6185 | 0.9214 | 2400 | 6.6168 |
6.6255 | 0.9598 | 2500 | 6.6165 |
6.6301 | 0.9982 | 2600 | 6.6162 |
7.1902 | 1.0366 | 2700 | 6.6162 |
5.5572 | 1.0750 | 2800 | 6.6156 |
6.7101 | 1.1134 | 2900 | 6.6156 |
6.1659 | 1.1517 | 3000 | 6.6155 |
6.7201 | 1.1901 | 3100 | 6.6153 |
6.6188 | 1.2285 | 3200 | 6.6152 |
5.846 | 1.2669 | 3300 | 6.6151 |
6.8901 | 1.3053 | 3400 | 6.6148 |
6.0211 | 1.3437 | 3500 | 6.6149 |
7.3173 | 1.3821 | 3600 | 6.6151 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/a20c3179-6bc5-4fb9-a229-a853a34533ba
Base model
echarlaix/tiny-random-PhiForCausalLM