Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: echarlaix/tiny-random-PhiForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - df4145ffec439e54_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/df4145ffec439e54_train_data.json
  type:
    field_instruction: text
    field_output: text_ja
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/a20c3179-6bc5-4fb9-a229-a853a34533ba
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4679
micro_batch_size: 4
mlflow_experiment_name: /tmp/df4145ffec439e54_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c30de9d5-9d24-44e1-9b62-deb3229d1fce
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c30de9d5-9d24-44e1-9b62-deb3229d1fce
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

a20c3179-6bc5-4fb9-a229-a853a34533ba

This model is a fine-tuned version of echarlaix/tiny-random-PhiForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 6.6151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 4679

Training results

Training Loss Epoch Step Validation Loss
6.9446 0.0004 1 6.9443
6.6666 0.0384 100 6.6708
6.6741 0.0768 200 6.6562
6.642 0.1152 300 6.6517
6.6381 0.1536 400 6.6443
6.6413 0.1920 500 6.6408
6.6588 0.2303 600 6.6375
6.6395 0.2687 700 6.6342
6.6493 0.3071 800 6.6328
6.6319 0.3455 900 6.6312
6.6399 0.3839 1000 6.6303
6.6457 0.4223 1100 6.6292
6.6224 0.4607 1200 6.6274
6.6191 0.4991 1300 6.6265
6.6389 0.5375 1400 6.6260
6.6216 0.5759 1500 6.6247
6.6458 0.6143 1600 6.6238
6.6266 0.6527 1700 6.6224
6.647 0.6910 1800 6.6211
6.6328 0.7294 1900 6.6197
6.6377 0.7678 2000 6.6186
6.6258 0.8062 2100 6.6181
6.6202 0.8446 2200 6.6180
6.6182 0.8830 2300 6.6173
6.6185 0.9214 2400 6.6168
6.6255 0.9598 2500 6.6165
6.6301 0.9982 2600 6.6162
7.1902 1.0366 2700 6.6162
5.5572 1.0750 2800 6.6156
6.7101 1.1134 2900 6.6156
6.1659 1.1517 3000 6.6155
6.7201 1.1901 3100 6.6153
6.6188 1.2285 3200 6.6152
5.846 1.2669 3300 6.6151
6.8901 1.3053 3400 6.6148
6.0211 1.3437 3500 6.6149
7.3173 1.3821 3600 6.6151

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/a20c3179-6bc5-4fb9-a229-a853a34533ba

Adapter
(193)
this model