IndicBART-mr-test
This model is a fine-tuned version of ai4bharat/IndicBART on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.7345
- Rouge1: 47.0576
- Rouge2: 4.7014
- Rougel: 47.0474
- Rougelsum: 47.0396
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
3.6435 | 1.0 | 909 | 2.8758 | 45.165 | 1.1394 | 45.168 | 45.1586 |
3.1753 | 2.0 | 1818 | 2.7719 | 46.5321 | 3.3062 | 46.5286 | 46.5338 |
3.0756 | 3.0 | 2727 | 2.7413 | 46.7024 | 4.0972 | 46.696 | 46.6929 |
3.0307 | 4.0 | 3636 | 2.7345 | 47.0576 | 4.7014 | 47.0474 | 47.0396 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 43
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support