Model Card
Model Details
- Developed by: Amar-89
- Model type: Quantized (8-bit)
- License: MIT
- Quantized from model: meta-llama/Llama-3.1-8B-Instruct
- Model size: 9.1 GB
Uses the tokenizer from the base model. No additional tweaks to model besides quantization. Recommended: 12 GB VRAM
How to use
pip install -q -U torch bitsandbytes transformers accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "Amar-89/Llama-3.1-8B-Instruct-8bit"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def terminal_chat(model, tokenizer, system_prompt):
"""
Starts a terminal-based chat session with a specified model, tokenizer, and system prompt.
Args:
model: The Hugging Face model object.
tokenizer: The Hugging Face tokenizer object.
system_prompt: The system role or instruction to define the chat behavior.
"""
from transformers import pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
messages = [{"role": "system", "content": system_prompt}]
print("Chat session started. Type 'exit' to quit.")
while True:
user_input = input("User: ")
if user_input.lower() == "exit":
print("Ending chat session. Goodbye!")
break
messages.append({"role": "user", "content": user_input})
outputs = pipe(messages, max_new_tokens=256)
response = outputs[0]["generated_text"][-1]['content']
print(f"Assistant: {response}")
print(messages)
system_prompt = "You are a pirate chatbot who always responds in pirate speak!"
terminal_chat(model, tokenizer, system_prompt)
- Downloads last month
- 35
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
馃檵
Ask for provider support
Model tree for Amar-89/Llama-3.1-8B-Instruct-8bit
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct