AnaG18's picture
Training complete
aa25909 verified
---
library_name: transformers
license: mit
base_model: microsoft/biogpt
tags:
- generated_from_trainer
datasets:
- ncbi_disease
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: biogpt-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ncbi_disease
type: ncbi_disease
config: ncbi_disease
split: validation
args: ncbi_disease
metrics:
- name: Precision
type: precision
value: 0.6861233480176211
- name: Recall
type: recall
value: 0.7966751918158568
- name: F1
type: f1
value: 0.7372781065088758
- name: Accuracy
type: accuracy
value: 0.9789725305890933
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# biogpt-finetuned-ner
This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the ncbi_disease dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1003
- Precision: 0.6861
- Recall: 0.7967
- F1: 0.7373
- Accuracy: 0.9790
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.058 | 1.0 | 679 | 0.0737 | 0.6191 | 0.7941 | 0.6958 | 0.9757 |
| 0.0473 | 2.0 | 1358 | 0.0845 | 0.6953 | 0.7762 | 0.7335 | 0.9785 |
| 0.0143 | 3.0 | 2037 | 0.1003 | 0.6861 | 0.7967 | 0.7373 | 0.9790 |
### Framework versions
- Transformers 4.51.2
- Pytorch 2.1.0+cu121
- Datasets 3.5.0
- Tokenizers 0.21.1