SmolVLM-500M-Anime-Caption-v0.1
SmolVLM-500M-Anime-Caption-v0.1 is a vision-language model specializing in describing anime-style images.
It was fine-tuned from HuggingFaceTB/SmolVLM-500M-Base on 180,000 synthetic image/caption pairs generated with recent LLMs (Gemma 3, Gemini 2.0 Flash, Llama 4 Maverick, and GPT-4.1).
- Base Model: HuggingFaceTB/SmolVLM-500M-Base
- Vision Encoder: SigLIP (google/siglip-base-patch16-512)
- Language: English (image captioning)
- License: Apache 2.0
- Fine-tuning dataset: 180k synthetic anime image/caption pairs generated via advanced LLMs, focusing specifically on anime content and style.
Model Description
This model is designed for efficient, high-quality captioning of anime-style images.
It can produce natural English descriptions for a variety of anime and illustration artworks.
Intended Use
- Anime image captioning: Generate English descriptions for anime, manga panels, or illustrations.
- Content indexing or tagging for anime-focused archives, databases, and creative tools.
Out of Scope / Limitations:
The model is not intended for real-world photograph captioning, non-anime artwork, or critical decision-making scenarios.
Example Inference
Here is a recommended inference pipeline (transformers
):
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, Idefics3ForConditionalGeneration, TextIteratorStreamer, StoppingCriteria, StoppingCriteriaList
base_model_id = "Andres77872/SmolVLM-500M-anime-caption-v0.1"
processor = AutoProcessor.from_pretrained(base_model_id)
model = Idefics3ForConditionalGeneration.from_pretrained(
base_model_id,
device_map="auto",
torch_dtype=torch.bfloat16
)
class StopOnTokens(StoppingCriteria):
def __init__(self, tokenizer, stop_sequence):
super().__init__()
self.tokenizer = tokenizer
self.stop_sequence = stop_sequence
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
new_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
max_keep = len(self.stop_sequence) + 10
if len(new_text) > max_keep:
new_text = new_text[-max_keep:]
return self.stop_sequence in new_text
def prepare_inputs(image: Image.Image):
# IMPORTANT: The question prompt must remain fixed as "describe the image".
# This model is NOT designed for visual question answering.
# It is strictly an image captioning model, not intended to answer arbitrary visual questions.
question = "describe the image"
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": question}
]
}
]
max_image_size = processor.image_processor.max_image_size["longest_edge"]
size = processor.image_processor.size.copy()
if "longest_edge" in size and size["longest_edge"] > max_image_size:
size["longest_edge"] = max_image_size
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=[prompt], images=[[image]], return_tensors='pt', padding=True, size=size)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
return inputs
# Example: caption a sample anime image
image = Image.open(requests.get('https://img.arz.ai/5A7A-ckt', stream=True).raw).convert("RGB")
inputs = prepare_inputs(image)
stop_sequence = "</QUERY>"
streamer = TextIteratorStreamer(
processor.tokenizer,
skip_prompt=True,
skip_special_tokens=True,
)
custom_stopping_criteria = StoppingCriteriaList([
StopOnTokens(processor.tokenizer, stop_sequence)
])
with torch.no_grad():
generation_kwargs = dict(
**inputs,
streamer=streamer,
do_sample=False,
max_new_tokens=512,
pad_token_id=processor.tokenizer.pad_token_id,
stopping_criteria=custom_stopping_criteria,
)
import threading
generation_thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
generation_thread.start()
for new_text in streamer:
print(new_text, end="", flush=True)
generation_thread.join()
Training Details
- Fine-tuning dataset: 180,000 pairs of anime images and synthetic English captions
- Caption generation: Synthetic captions were produced using Gemma 3, Gemini 2.0 Flash, Llama 4 Maverick, and GPT-4.1.
- Task: Image-to-text, focused on high-quality anime-style descriptions.
- Base model: HuggingFaceTB/SmolVLM-500M-Base
License
Apache 2.0 (Inherited from base and training components)
Attribution
This model is a fine-tuned derivative of
HuggingFaceTB/SmolVLM-500M-Base
using synthetic data generated with large language models, for the task of anime image captioning.
- Downloads last month
- 64
Model tree for Andres77872/SmolVLM-500M-anime-caption-v0.1
Base model
HuggingFaceTB/SmolVLM-500M-Base