AnirudhRajagopalan1201's picture
Update README.md
5dadbeb verified
|
raw
history blame
1.32 kB
metadata
library_name: transformers
datasets:
  - roneneldan/TinyStories

Model trained on the TinyStories Dataset, replicating https://arxiv.org/abs/2305.07759

Based on GPT-Neo architecture.

hyperparams used to train this model:

    "batch_size": 32,
    "block_size": 256,
    "lr": 5e-4,
    "n_layer": 6,
    "n_head": 6,
    "n_embd": 288,
    "dropout": 0.1,
    "weight_decay": 0.01,
    "epochs": 1,
    "eval_interval": 200,
    "eval_steps": 50,
    "vocab_size": 50257, 
    "warmup_tokens": 10000,
    "gradient_accumulation_steps": 8

------ EXAMPLE USAGE ---

!pip install --quiet transformers from transformers import AutoModelForCausalLM, AutoTokenizer model20 = AutoModelForCausalLM.from_pretrained('AnirudhRajagopalan1201/tinystories-custom-20M')

tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M") prompt = "Lily likes cats and dogs. She asked her mom for a dog and her mom said no, so instead she asked" input_ids = tokenizer.encode(prompt, return_tensors="pt") print("--------------20M parameter--------------------------------") output = model20.generate(input_ids, temperature=0.2, max_length = 100, do_sample=True) output_text = tokenizer.decode(output[0], skip_special_tokens=True) print(output_text)