Uploaded model

  • Developed by: AquilaX-AI
  • License: apache-2.0
  • Finetuned from model : AquilaX-AI/ai_scanner

This qwen2 model was trained 2x faster with Unsloth and Huggingface's TRL library.

pip install gguf
pip install transformers

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import torch
import json

model_id = "AquilaX-AI/AI-Scanner-Quantized"
filename = "unsloth.Q8_0.gguf"

tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

sys_prompt = """<|im_start|>system\nYou are Securitron, an AI assistant specialized in detecting vulnerabilities in source code. Analyze the provided code and provide a structured report on any security issues found.<|im_end|>"""

user_prompt = """
CODE FOR SCANNING
"""

prompt = f"""{sys_prompt}
<|im_start|>user
{user_prompt}<|im_end|>
<|im_start|>assistant
"""

encodeds = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.to(device)

text_streamer = TextStreamer(tokenizer, skip_prompt=True)

response = model.generate(
    input_ids=encodeds,
    streamer=text_streamer,
    max_new_tokens=4096,
    use_cache=True,
    pad_token_id=151645,
    eos_token_id=151645,
    num_return_sequences=1
)
    
output = json.loads(tokenizer.decode(response[0]).split('<|im_start|>assistant')[-1].split('<|im_end|>')[0].strip())
Downloads last month
166
GGUF
Model size
3.09B params
Architecture
qwen2
Hardware compatibility
Log In to view the estimation

4-bit

5-bit

8-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AquilaX-AI/AI-Scanner-Quantized

Quantized
(1)
this model