ht-stmini-cls-v6_ftis_noPretrain
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.7306
- Accuracy: 0.9077
- Macro F1: 0.7713
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 6733
- training_steps: 134674
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 |
---|---|---|---|---|---|
34.0309 | 0.0013 | 174 | 54.3149 | 0.0208 | 0.0149 |
13.9676 | 1.0013 | 348 | 106.7151 | 0.2082 | 0.0707 |
6.6221 | 2.0013 | 522 | 162.7861 | 0.4882 | 0.1244 |
5.6829 | 3.0013 | 696 | 147.2379 | 0.5382 | 0.1328 |
4.7257 | 4.0013 | 870 | 126.3738 | 0.5631 | 0.1399 |
4.1961 | 5.0013 | 1044 | 90.0849 | 0.5861 | 0.1449 |
3.393 | 6.0012 | 1218 | 74.7840 | 0.5754 | 0.1495 |
2.97 | 7.0012 | 1392 | 59.0515 | 0.6010 | 0.1596 |
2.6074 | 8.0012 | 1566 | 41.9846 | 0.6152 | 0.1598 |
2.4519 | 9.0012 | 1740 | 31.2251 | 0.6339 | 0.1744 |
2.3446 | 10.0012 | 1914 | 27.2994 | 0.6257 | 0.1711 |
2.1896 | 11.0012 | 2088 | 24.9494 | 0.6354 | 0.1897 |
2.1176 | 12.0012 | 2262 | 18.0234 | 0.6286 | 0.1901 |
2.166 | 13.0012 | 2436 | 16.7247 | 0.6481 | 0.2038 |
1.9853 | 14.0012 | 2610 | 16.4197 | 0.6614 | 0.2220 |
1.9643 | 15.0012 | 2784 | 14.9593 | 0.6594 | 0.2237 |
1.8193 | 16.0012 | 2958 | 10.3868 | 0.6682 | 0.2492 |
1.7405 | 17.0012 | 3132 | 9.2300 | 0.6515 | 0.2544 |
1.7794 | 18.0012 | 3306 | 10.9663 | 0.6843 | 0.3047 |
1.6996 | 19.0012 | 3480 | 8.8828 | 0.6839 | 0.2899 |
1.5995 | 20.0011 | 3654 | 9.0213 | 0.6987 | 0.3046 |
1.5234 | 21.0011 | 3828 | 6.5229 | 0.7215 | 0.3458 |
1.4337 | 22.0011 | 4002 | 7.9392 | 0.7445 | 0.3797 |
1.4328 | 23.0011 | 4176 | 7.1796 | 0.7483 | 0.3963 |
1.2907 | 24.0011 | 4350 | 6.5769 | 0.7434 | 0.4137 |
1.2665 | 25.0011 | 4524 | 8.2191 | 0.7450 | 0.3911 |
1.1392 | 26.0011 | 4698 | 6.4740 | 0.7661 | 0.4338 |
1.1307 | 27.0011 | 4872 | 8.9443 | 0.7740 | 0.4551 |
1.0104 | 28.0011 | 5046 | 9.2499 | 0.7699 | 0.4467 |
1.0111 | 29.0011 | 5220 | 8.1054 | 0.7693 | 0.4691 |
0.9978 | 30.0011 | 5394 | 7.6890 | 0.7674 | 0.4611 |
0.9727 | 31.0011 | 5568 | 8.9909 | 0.7854 | 0.4751 |
0.8926 | 32.0011 | 5742 | 8.0058 | 0.7853 | 0.4826 |
0.8245 | 33.0010 | 5916 | 11.8066 | 0.7745 | 0.4663 |
0.782 | 34.0010 | 6090 | 11.8401 | 0.7803 | 0.5065 |
0.8448 | 35.0010 | 6264 | 10.3797 | 0.7824 | 0.4931 |
0.7597 | 36.0010 | 6438 | 9.6193 | 0.8003 | 0.5112 |
0.7055 | 37.0010 | 6612 | 10.2706 | 0.7959 | 0.5151 |
0.7622 | 38.0010 | 6786 | 10.5250 | 0.7970 | 0.5187 |
0.703 | 39.0010 | 6960 | 12.6031 | 0.7886 | 0.4959 |
0.5646 | 40.0010 | 7134 | 12.4053 | 0.8063 | 0.5345 |
0.5838 | 41.0010 | 7308 | 11.5444 | 0.8031 | 0.5242 |
0.5668 | 42.0010 | 7482 | 13.1968 | 0.8198 | 0.5566 |
0.5412 | 43.0010 | 7656 | 13.3207 | 0.8259 | 0.5638 |
0.4823 | 44.0010 | 7830 | 14.3239 | 0.8365 | 0.5842 |
0.4444 | 45.0010 | 8004 | 16.5850 | 0.8259 | 0.5701 |
0.4614 | 46.0010 | 8178 | 18.1794 | 0.8416 | 0.5988 |
0.4054 | 47.0009 | 8352 | 16.7647 | 0.8504 | 0.6067 |
0.3694 | 48.0009 | 8526 | 18.4008 | 0.8434 | 0.5968 |
0.3453 | 49.0009 | 8700 | 17.3898 | 0.8481 | 0.6201 |
0.3473 | 50.0009 | 8874 | 14.6636 | 0.8508 | 0.6095 |
0.3727 | 51.0009 | 9048 | 19.7604 | 0.8547 | 0.6144 |
0.302 | 52.0009 | 9222 | 18.8168 | 0.8524 | 0.6177 |
0.2825 | 53.0009 | 9396 | 14.5673 | 0.8530 | 0.6279 |
0.2729 | 54.0009 | 9570 | 16.7929 | 0.8580 | 0.6365 |
0.2548 | 55.0009 | 9744 | 18.6582 | 0.8650 | 0.6466 |
0.2389 | 56.0009 | 9918 | 17.1777 | 0.8654 | 0.6428 |
0.2084 | 57.0009 | 10092 | 14.7710 | 0.8711 | 0.6617 |
0.2217 | 58.0009 | 10266 | 12.9179 | 0.8708 | 0.6684 |
0.2174 | 59.0009 | 10440 | 13.1419 | 0.8651 | 0.6493 |
0.2062 | 60.0008 | 10614 | 12.6303 | 0.8676 | 0.6625 |
0.1818 | 61.0008 | 10788 | 13.4220 | 0.8757 | 0.6703 |
0.1786 | 62.0008 | 10962 | 16.0360 | 0.8694 | 0.6652 |
0.169 | 63.0008 | 11136 | 12.0630 | 0.8746 | 0.6673 |
0.1628 | 64.0008 | 11310 | 10.7680 | 0.8771 | 0.6783 |
0.1554 | 65.0008 | 11484 | 10.6072 | 0.8713 | 0.6717 |
0.1496 | 66.0008 | 11658 | 11.1266 | 0.8718 | 0.6814 |
0.1345 | 67.0008 | 11832 | 10.2608 | 0.8726 | 0.6733 |
0.1383 | 68.0008 | 12006 | 11.4513 | 0.8828 | 0.6932 |
0.1291 | 69.0008 | 12180 | 8.7030 | 0.8822 | 0.6921 |
0.1161 | 70.0008 | 12354 | 10.1977 | 0.8826 | 0.6980 |
0.1147 | 71.0008 | 12528 | 7.5840 | 0.8830 | 0.7010 |
0.1275 | 72.0008 | 12702 | 8.0253 | 0.8860 | 0.7090 |
0.1077 | 73.0007 | 12876 | 7.8158 | 0.8818 | 0.6936 |
0.1088 | 74.0007 | 13050 | 7.5541 | 0.8804 | 0.6942 |
0.1031 | 75.0007 | 13224 | 6.8490 | 0.8842 | 0.7081 |
0.112 | 76.0007 | 13398 | 7.3048 | 0.8848 | 0.7055 |
0.096 | 77.0007 | 13572 | 6.4591 | 0.8795 | 0.7054 |
0.0815 | 78.0007 | 13746 | 7.0254 | 0.8880 | 0.7174 |
0.08 | 79.0007 | 13920 | 7.1399 | 0.8852 | 0.7151 |
0.0929 | 80.0007 | 14094 | 6.8153 | 0.8869 | 0.7080 |
0.0803 | 81.0007 | 14268 | 6.3389 | 0.8869 | 0.7125 |
0.0775 | 82.0007 | 14442 | 5.7511 | 0.8881 | 0.7109 |
0.0752 | 83.0007 | 14616 | 6.5417 | 0.8855 | 0.7037 |
0.072 | 84.0007 | 14790 | 5.8264 | 0.8916 | 0.7258 |
0.0692 | 85.0007 | 14964 | 6.6974 | 0.8874 | 0.7194 |
0.0672 | 86.0007 | 15138 | 5.4084 | 0.8919 | 0.7243 |
0.0612 | 87.0006 | 15312 | 5.1521 | 0.8820 | 0.7298 |
0.0595 | 88.0006 | 15486 | 5.0756 | 0.8953 | 0.7371 |
0.0613 | 89.0006 | 15660 | 5.0541 | 0.8852 | 0.7144 |
0.0628 | 90.0006 | 15834 | 4.8922 | 0.8931 | 0.7316 |
0.0577 | 91.0006 | 16008 | 6.0652 | 0.8884 | 0.7243 |
0.057 | 92.0006 | 16182 | 4.4136 | 0.8899 | 0.7258 |
0.0554 | 93.0006 | 16356 | 5.2064 | 0.8945 | 0.7380 |
0.0501 | 94.0006 | 16530 | 4.6064 | 0.8914 | 0.7328 |
0.0503 | 95.0006 | 16704 | 4.4629 | 0.8916 | 0.7319 |
0.0524 | 96.0006 | 16878 | 4.6768 | 0.8987 | 0.7339 |
0.0512 | 97.0006 | 17052 | 4.0132 | 0.8948 | 0.7299 |
0.0456 | 98.0006 | 17226 | 4.4474 | 0.8955 | 0.7344 |
0.0466 | 99.0006 | 17400 | 4.3961 | 0.8931 | 0.7310 |
0.0514 | 100.0005 | 17574 | 4.1822 | 0.9001 | 0.7445 |
0.0574 | 101.0005 | 17748 | 4.5937 | 0.8937 | 0.7324 |
0.0441 | 102.0005 | 17922 | 4.6609 | 0.8972 | 0.7485 |
0.0393 | 103.0005 | 18096 | 4.8007 | 0.8954 | 0.7391 |
0.0407 | 104.0005 | 18270 | 4.8574 | 0.8979 | 0.7442 |
0.0398 | 105.0005 | 18444 | 4.0337 | 0.8940 | 0.7465 |
0.0387 | 106.0005 | 18618 | 4.3228 | 0.8995 | 0.7521 |
0.0426 | 107.0005 | 18792 | 3.8549 | 0.8953 | 0.7543 |
0.0425 | 108.0005 | 18966 | 4.3286 | 0.8909 | 0.7309 |
0.0405 | 109.0005 | 19140 | 3.8524 | 0.8971 | 0.7428 |
0.0377 | 110.0005 | 19314 | 4.2679 | 0.9014 | 0.7452 |
0.0375 | 111.0005 | 19488 | 4.2141 | 0.9026 | 0.7470 |
0.0342 | 112.0005 | 19662 | 4.0151 | 0.8986 | 0.7478 |
0.0367 | 113.0005 | 19836 | 4.1929 | 0.8993 | 0.7605 |
0.0335 | 114.0004 | 20010 | 4.4448 | 0.8964 | 0.7481 |
0.0409 | 115.0004 | 20184 | 3.7438 | 0.8960 | 0.7454 |
0.0342 | 116.0004 | 20358 | 3.6396 | 0.9024 | 0.7668 |
0.0302 | 117.0004 | 20532 | 3.7275 | 0.9014 | 0.7517 |
0.035 | 118.0004 | 20706 | 3.8500 | 0.8972 | 0.7461 |
0.03 | 119.0004 | 20880 | 4.0516 | 0.8987 | 0.7510 |
0.0314 | 120.0004 | 21054 | 3.8933 | 0.8948 | 0.7503 |
0.0273 | 121.0004 | 21228 | 3.5428 | 0.8940 | 0.7518 |
0.0312 | 122.0004 | 21402 | 3.3716 | 0.8998 | 0.7599 |
0.0311 | 123.0004 | 21576 | 3.9390 | 0.8972 | 0.7526 |
0.0317 | 124.0004 | 21750 | 3.5682 | 0.9077 | 0.7713 |
0.0268 | 125.0004 | 21924 | 4.2324 | 0.8947 | 0.7434 |
0.0268 | 126.0004 | 22098 | 4.2147 | 0.8973 | 0.7512 |
0.0287 | 127.0003 | 22272 | 4.2243 | 0.8992 | 0.7497 |
0.0245 | 128.0003 | 22446 | 4.1498 | 0.8944 | 0.7443 |
0.0296 | 129.0003 | 22620 | 3.3685 | 0.9004 | 0.7562 |
0.0285 | 130.0003 | 22794 | 3.5653 | 0.8927 | 0.7431 |
0.0259 | 131.0003 | 22968 | 4.1205 | 0.8981 | 0.7534 |
0.0251 | 132.0003 | 23142 | 3.4222 | 0.9015 | 0.7534 |
0.0259 | 133.0003 | 23316 | 3.7601 | 0.8948 | 0.7487 |
0.0266 | 134.0003 | 23490 | 3.6945 | 0.9017 | 0.7602 |
0.0259 | 135.0003 | 23664 | 3.3098 | 0.9052 | 0.7668 |
0.0238 | 136.0003 | 23838 | 4.4286 | 0.9004 | 0.7511 |
0.026 | 137.0003 | 24012 | 3.9345 | 0.9023 | 0.7686 |
0.0268 | 138.0003 | 24186 | 3.9251 | 0.9024 | 0.7606 |
0.0209 | 139.0003 | 24360 | 3.8137 | 0.9043 | 0.7673 |
0.0222 | 140.0003 | 24534 | 3.6423 | 0.9039 | 0.7657 |
0.0243 | 141.0002 | 24708 | 4.1213 | 0.9033 | 0.7616 |
0.0212 | 142.0002 | 24882 | 3.6288 | 0.8978 | 0.7558 |
0.0215 | 143.0002 | 25056 | 3.3427 | 0.9033 | 0.7558 |
0.0243 | 144.0002 | 25230 | 3.2026 | 0.9048 | 0.7630 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support