ht-stmini-cls-v6_ftis_noPretrain

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7306
  • Accuracy: 0.9077
  • Macro F1: 0.7713

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6733
  • training_steps: 134674

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
34.0309 0.0013 174 54.3149 0.0208 0.0149
13.9676 1.0013 348 106.7151 0.2082 0.0707
6.6221 2.0013 522 162.7861 0.4882 0.1244
5.6829 3.0013 696 147.2379 0.5382 0.1328
4.7257 4.0013 870 126.3738 0.5631 0.1399
4.1961 5.0013 1044 90.0849 0.5861 0.1449
3.393 6.0012 1218 74.7840 0.5754 0.1495
2.97 7.0012 1392 59.0515 0.6010 0.1596
2.6074 8.0012 1566 41.9846 0.6152 0.1598
2.4519 9.0012 1740 31.2251 0.6339 0.1744
2.3446 10.0012 1914 27.2994 0.6257 0.1711
2.1896 11.0012 2088 24.9494 0.6354 0.1897
2.1176 12.0012 2262 18.0234 0.6286 0.1901
2.166 13.0012 2436 16.7247 0.6481 0.2038
1.9853 14.0012 2610 16.4197 0.6614 0.2220
1.9643 15.0012 2784 14.9593 0.6594 0.2237
1.8193 16.0012 2958 10.3868 0.6682 0.2492
1.7405 17.0012 3132 9.2300 0.6515 0.2544
1.7794 18.0012 3306 10.9663 0.6843 0.3047
1.6996 19.0012 3480 8.8828 0.6839 0.2899
1.5995 20.0011 3654 9.0213 0.6987 0.3046
1.5234 21.0011 3828 6.5229 0.7215 0.3458
1.4337 22.0011 4002 7.9392 0.7445 0.3797
1.4328 23.0011 4176 7.1796 0.7483 0.3963
1.2907 24.0011 4350 6.5769 0.7434 0.4137
1.2665 25.0011 4524 8.2191 0.7450 0.3911
1.1392 26.0011 4698 6.4740 0.7661 0.4338
1.1307 27.0011 4872 8.9443 0.7740 0.4551
1.0104 28.0011 5046 9.2499 0.7699 0.4467
1.0111 29.0011 5220 8.1054 0.7693 0.4691
0.9978 30.0011 5394 7.6890 0.7674 0.4611
0.9727 31.0011 5568 8.9909 0.7854 0.4751
0.8926 32.0011 5742 8.0058 0.7853 0.4826
0.8245 33.0010 5916 11.8066 0.7745 0.4663
0.782 34.0010 6090 11.8401 0.7803 0.5065
0.8448 35.0010 6264 10.3797 0.7824 0.4931
0.7597 36.0010 6438 9.6193 0.8003 0.5112
0.7055 37.0010 6612 10.2706 0.7959 0.5151
0.7622 38.0010 6786 10.5250 0.7970 0.5187
0.703 39.0010 6960 12.6031 0.7886 0.4959
0.5646 40.0010 7134 12.4053 0.8063 0.5345
0.5838 41.0010 7308 11.5444 0.8031 0.5242
0.5668 42.0010 7482 13.1968 0.8198 0.5566
0.5412 43.0010 7656 13.3207 0.8259 0.5638
0.4823 44.0010 7830 14.3239 0.8365 0.5842
0.4444 45.0010 8004 16.5850 0.8259 0.5701
0.4614 46.0010 8178 18.1794 0.8416 0.5988
0.4054 47.0009 8352 16.7647 0.8504 0.6067
0.3694 48.0009 8526 18.4008 0.8434 0.5968
0.3453 49.0009 8700 17.3898 0.8481 0.6201
0.3473 50.0009 8874 14.6636 0.8508 0.6095
0.3727 51.0009 9048 19.7604 0.8547 0.6144
0.302 52.0009 9222 18.8168 0.8524 0.6177
0.2825 53.0009 9396 14.5673 0.8530 0.6279
0.2729 54.0009 9570 16.7929 0.8580 0.6365
0.2548 55.0009 9744 18.6582 0.8650 0.6466
0.2389 56.0009 9918 17.1777 0.8654 0.6428
0.2084 57.0009 10092 14.7710 0.8711 0.6617
0.2217 58.0009 10266 12.9179 0.8708 0.6684
0.2174 59.0009 10440 13.1419 0.8651 0.6493
0.2062 60.0008 10614 12.6303 0.8676 0.6625
0.1818 61.0008 10788 13.4220 0.8757 0.6703
0.1786 62.0008 10962 16.0360 0.8694 0.6652
0.169 63.0008 11136 12.0630 0.8746 0.6673
0.1628 64.0008 11310 10.7680 0.8771 0.6783
0.1554 65.0008 11484 10.6072 0.8713 0.6717
0.1496 66.0008 11658 11.1266 0.8718 0.6814
0.1345 67.0008 11832 10.2608 0.8726 0.6733
0.1383 68.0008 12006 11.4513 0.8828 0.6932
0.1291 69.0008 12180 8.7030 0.8822 0.6921
0.1161 70.0008 12354 10.1977 0.8826 0.6980
0.1147 71.0008 12528 7.5840 0.8830 0.7010
0.1275 72.0008 12702 8.0253 0.8860 0.7090
0.1077 73.0007 12876 7.8158 0.8818 0.6936
0.1088 74.0007 13050 7.5541 0.8804 0.6942
0.1031 75.0007 13224 6.8490 0.8842 0.7081
0.112 76.0007 13398 7.3048 0.8848 0.7055
0.096 77.0007 13572 6.4591 0.8795 0.7054
0.0815 78.0007 13746 7.0254 0.8880 0.7174
0.08 79.0007 13920 7.1399 0.8852 0.7151
0.0929 80.0007 14094 6.8153 0.8869 0.7080
0.0803 81.0007 14268 6.3389 0.8869 0.7125
0.0775 82.0007 14442 5.7511 0.8881 0.7109
0.0752 83.0007 14616 6.5417 0.8855 0.7037
0.072 84.0007 14790 5.8264 0.8916 0.7258
0.0692 85.0007 14964 6.6974 0.8874 0.7194
0.0672 86.0007 15138 5.4084 0.8919 0.7243
0.0612 87.0006 15312 5.1521 0.8820 0.7298
0.0595 88.0006 15486 5.0756 0.8953 0.7371
0.0613 89.0006 15660 5.0541 0.8852 0.7144
0.0628 90.0006 15834 4.8922 0.8931 0.7316
0.0577 91.0006 16008 6.0652 0.8884 0.7243
0.057 92.0006 16182 4.4136 0.8899 0.7258
0.0554 93.0006 16356 5.2064 0.8945 0.7380
0.0501 94.0006 16530 4.6064 0.8914 0.7328
0.0503 95.0006 16704 4.4629 0.8916 0.7319
0.0524 96.0006 16878 4.6768 0.8987 0.7339
0.0512 97.0006 17052 4.0132 0.8948 0.7299
0.0456 98.0006 17226 4.4474 0.8955 0.7344
0.0466 99.0006 17400 4.3961 0.8931 0.7310
0.0514 100.0005 17574 4.1822 0.9001 0.7445
0.0574 101.0005 17748 4.5937 0.8937 0.7324
0.0441 102.0005 17922 4.6609 0.8972 0.7485
0.0393 103.0005 18096 4.8007 0.8954 0.7391
0.0407 104.0005 18270 4.8574 0.8979 0.7442
0.0398 105.0005 18444 4.0337 0.8940 0.7465
0.0387 106.0005 18618 4.3228 0.8995 0.7521
0.0426 107.0005 18792 3.8549 0.8953 0.7543
0.0425 108.0005 18966 4.3286 0.8909 0.7309
0.0405 109.0005 19140 3.8524 0.8971 0.7428
0.0377 110.0005 19314 4.2679 0.9014 0.7452
0.0375 111.0005 19488 4.2141 0.9026 0.7470
0.0342 112.0005 19662 4.0151 0.8986 0.7478
0.0367 113.0005 19836 4.1929 0.8993 0.7605
0.0335 114.0004 20010 4.4448 0.8964 0.7481
0.0409 115.0004 20184 3.7438 0.8960 0.7454
0.0342 116.0004 20358 3.6396 0.9024 0.7668
0.0302 117.0004 20532 3.7275 0.9014 0.7517
0.035 118.0004 20706 3.8500 0.8972 0.7461
0.03 119.0004 20880 4.0516 0.8987 0.7510
0.0314 120.0004 21054 3.8933 0.8948 0.7503
0.0273 121.0004 21228 3.5428 0.8940 0.7518
0.0312 122.0004 21402 3.3716 0.8998 0.7599
0.0311 123.0004 21576 3.9390 0.8972 0.7526
0.0317 124.0004 21750 3.5682 0.9077 0.7713
0.0268 125.0004 21924 4.2324 0.8947 0.7434
0.0268 126.0004 22098 4.2147 0.8973 0.7512
0.0287 127.0003 22272 4.2243 0.8992 0.7497
0.0245 128.0003 22446 4.1498 0.8944 0.7443
0.0296 129.0003 22620 3.3685 0.9004 0.7562
0.0285 130.0003 22794 3.5653 0.8927 0.7431
0.0259 131.0003 22968 4.1205 0.8981 0.7534
0.0251 132.0003 23142 3.4222 0.9015 0.7534
0.0259 133.0003 23316 3.7601 0.8948 0.7487
0.0266 134.0003 23490 3.6945 0.9017 0.7602
0.0259 135.0003 23664 3.3098 0.9052 0.7668
0.0238 136.0003 23838 4.4286 0.9004 0.7511
0.026 137.0003 24012 3.9345 0.9023 0.7686
0.0268 138.0003 24186 3.9251 0.9024 0.7606
0.0209 139.0003 24360 3.8137 0.9043 0.7673
0.0222 140.0003 24534 3.6423 0.9039 0.7657
0.0243 141.0002 24708 4.1213 0.9033 0.7616
0.0212 142.0002 24882 3.6288 0.8978 0.7558
0.0215 143.0002 25056 3.3427 0.9033 0.7558
0.0243 144.0002 25230 3.2026 0.9048 0.7630

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
7
Safetensors
Model size
31.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support