ht-stmini-cls-v6_ftis_noPretrain-gtsp-m1drp0.5trp0.5

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 7.1405
  • Accuracy: 0.8861
  • Macro F1: 0.7242

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6733
  • training_steps: 134675

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
46.1739 0.0013 169 54.5936 0.0643 0.0263
20.3382 1.0012 338 119.0171 0.2263 0.0639
7.5451 2.0012 507 196.3073 0.4877 0.1232
6.4507 3.0012 676 232.9836 0.5399 0.1330
6.1129 4.0012 845 196.8743 0.5636 0.1387
5.1204 5.0012 1014 152.6818 0.5846 0.1470
4.6213 6.0012 1183 92.0791 0.6067 0.1570
4.0126 7.0012 1352 71.1870 0.6149 0.1629
3.5806 8.0012 1521 50.8923 0.6144 0.1630
3.3992 9.0012 1690 42.1669 0.6199 0.1712
3.1309 10.0012 1859 32.4374 0.6282 0.1759
2.9659 11.0012 2028 29.6463 0.6272 0.1763
2.8683 12.0012 2197 26.0668 0.6365 0.1933
2.7812 13.0012 2366 23.0157 0.6091 0.1905
2.7425 14.0012 2535 21.0243 0.6446 0.2091
2.6172 15.0011 2704 17.7302 0.6438 0.2232
2.5982 16.0011 2873 15.5038 0.6572 0.2453
2.5605 17.0011 3042 14.4028 0.6640 0.2521
2.5301 18.0011 3211 14.0581 0.6705 0.2627
2.5094 19.0011 3380 12.6933 0.6843 0.2805
2.279 20.0011 3549 12.7472 0.6893 0.3161
2.2173 21.0011 3718 9.8769 0.6950 0.3046
2.1963 22.0011 3887 11.8893 0.7077 0.3428
2.198 23.0011 4056 9.4825 0.7239 0.3676
2.1668 24.0011 4225 9.7164 0.7212 0.3819
2.1268 25.0011 4394 10.6331 0.7240 0.3796
1.9588 26.0011 4563 9.8210 0.7349 0.3834
1.9623 27.0011 4732 9.9962 0.7310 0.4091
1.9763 28.0010 4901 9.9540 0.7505 0.4347
1.9257 29.0010 5070 10.5623 0.7316 0.4262
1.8615 30.0010 5239 10.8115 0.7330 0.4152
1.7739 31.0010 5408 9.5557 0.7539 0.4343
1.7401 32.0010 5577 11.9211 0.7550 0.4510
1.7629 33.0010 5746 10.6967 0.7604 0.4623
1.5682 34.0010 5915 11.4143 0.7473 0.4569
1.6434 35.0010 6084 12.1514 0.7570 0.4817
1.5984 36.0010 6253 12.7246 0.7668 0.4595
1.5916 37.0010 6422 13.0271 0.7673 0.4958
1.4365 38.0010 6591 14.2249 0.7810 0.4872
1.474 39.0010 6760 14.7875 0.7724 0.4964
1.439 40.0010 6929 15.0381 0.7740 0.4937
1.3501 41.0010 7098 13.4024 0.7865 0.5106
1.3817 42.0009 7267 16.2374 0.7803 0.5070
1.3503 43.0009 7436 17.2895 0.7678 0.5064
1.2407 44.0009 7605 18.8522 0.7982 0.5280
1.2298 45.0009 7774 22.5457 0.7926 0.5310
1.199 46.0009 7943 23.9661 0.7969 0.5364
1.1683 47.0009 8112 21.2598 0.7984 0.5427
1.2042 48.0009 8281 23.5666 0.8057 0.5327
1.138 49.0009 8450 23.1386 0.8093 0.5430
1.1506 50.0009 8619 24.9053 0.8102 0.5382
1.0671 51.0009 8788 26.1047 0.8144 0.5545
1.0807 52.0009 8957 22.8301 0.8103 0.5458
1.0567 53.0009 9126 23.2382 0.8192 0.5554
1.0202 54.0009 9295 23.4562 0.8181 0.5539
1.0404 55.0008 9464 22.3486 0.8199 0.5741
1.0291 56.0008 9633 23.9191 0.8171 0.5530
0.9989 57.0008 9802 23.5076 0.8246 0.5564
0.9898 58.0008 9971 23.0975 0.8225 0.5626
1.0024 59.0008 10140 20.3025 0.8171 0.5613
0.9471 60.0008 10309 22.5295 0.8255 0.5657
0.9497 61.0008 10478 21.4868 0.8292 0.5835
0.9352 62.0008 10647 21.2701 0.8318 0.5734
0.9016 63.0008 10816 23.1550 0.8280 0.5742
0.901 64.0008 10985 19.7192 0.8334 0.5856
0.8881 65.0008 11154 21.3281 0.8391 0.5902
0.8847 66.0008 11323 21.6058 0.8310 0.5813
0.8833 67.0008 11492 18.6134 0.8369 0.5883
0.8615 68.0007 11661 20.1302 0.8386 0.5958
0.8676 69.0007 11830 18.9128 0.8338 0.5906
0.8571 70.0007 11999 19.4161 0.8398 0.5945
0.8375 71.0007 12168 17.3181 0.8415 0.6028
0.8295 72.0007 12337 17.6274 0.8447 0.6123
0.8167 73.0007 12506 16.9940 0.8411 0.6070
0.8002 74.0007 12675 15.4095 0.8387 0.6052
0.8253 75.0007 12844 16.7561 0.8433 0.6147
0.7955 76.0007 13013 17.0732 0.8444 0.6172
0.7825 77.0007 13182 15.7842 0.8423 0.6114
0.7873 78.0007 13351 14.9193 0.8463 0.6171
0.7843 79.0007 13520 12.0909 0.8551 0.6335
0.7736 80.0007 13689 15.5886 0.8533 0.6267
0.7732 81.0007 13858 14.8050 0.8481 0.6247
0.7651 82.0006 14027 13.9704 0.8494 0.6312
0.7658 83.0006 14196 12.7090 0.8521 0.6265
0.7744 84.0006 14365 12.8064 0.8540 0.6414
0.759 85.0006 14534 11.2890 0.8539 0.6375
0.7522 86.0006 14703 12.0294 0.8537 0.6357
0.7486 87.0006 14872 11.4561 0.8554 0.6348
0.7466 88.0006 15041 10.2362 0.8571 0.6459
0.7474 89.0006 15210 10.3035 0.8595 0.6440
0.7261 90.0006 15379 11.0865 0.8548 0.6378
0.7516 91.0006 15548 11.3736 0.8557 0.6375
0.731 92.0006 15717 10.4393 0.8540 0.6427
0.7284 93.0006 15886 10.0650 0.8611 0.6552
0.7199 94.0006 16055 9.7093 0.8596 0.6481
0.7113 95.0005 16224 10.9101 0.8563 0.6462
0.719 96.0005 16393 10.2613 0.8609 0.6630
0.7131 97.0005 16562 9.6693 0.8645 0.6649
0.7105 98.0005 16731 10.5206 0.8591 0.6627
0.7058 99.0005 16900 8.4620 0.8652 0.6582
0.7024 100.0005 17069 8.8105 0.8643 0.6570
0.7022 101.0005 17238 9.3463 0.8666 0.6626
0.6979 102.0005 17407 9.0670 0.8632 0.6578
0.699 103.0005 17576 9.1035 0.8644 0.6628
0.7127 104.0005 17745 7.6414 0.8656 0.6662
0.6951 105.0005 17914 9.0160 0.8670 0.6697
0.7026 106.0005 18083 8.6094 0.8647 0.6639
0.6952 107.0005 18252 8.4375 0.8649 0.6636
0.6842 108.0005 18421 7.9563 0.8634 0.6616
0.7037 109.0004 18590 7.6682 0.8645 0.6673
0.6824 110.0004 18759 8.2813 0.8635 0.6665
0.6878 111.0004 18928 7.9821 0.8662 0.6719
0.6832 112.0004 19097 8.8222 0.8642 0.6672
0.68 113.0004 19266 8.4816 0.8711 0.6752
0.6887 114.0004 19435 7.5124 0.8672 0.6743
0.6809 115.0004 19604 7.4288 0.8689 0.6726
0.6816 116.0004 19773 8.2735 0.8738 0.6789
0.6745 117.0004 19942 7.3800 0.8759 0.6833
0.674 118.0004 20111 6.7738 0.8730 0.6851
0.6746 119.0004 20280 7.3061 0.8698 0.6788
0.6773 120.0004 20449 7.0637 0.8752 0.6808
0.6673 121.0004 20618 8.0335 0.8732 0.6857
0.6691 122.0003 20787 7.5896 0.8699 0.6825
0.6717 123.0003 20956 7.5674 0.8658 0.6750
0.6642 124.0003 21125 7.0017 0.8713 0.6840
0.6708 125.0003 21294 6.9829 0.8648 0.6769
0.6756 126.0003 21463 7.8395 0.8716 0.6828
0.6525 127.0003 21632 6.1401 0.8730 0.6895
0.6621 128.0003 21801 7.0304 0.8723 0.6846
0.6494 129.0003 21970 6.6580 0.8713 0.6823
0.6636 130.0003 22139 6.0764 0.8736 0.6876
0.6599 131.0003 22308 6.0239 0.8689 0.6772
0.6579 132.0003 22477 6.0557 0.8733 0.6849
0.6639 133.0003 22646 6.0861 0.8771 0.6930
0.66 134.0003 22815 7.9144 0.8744 0.6928
0.6561 135.0003 22984 6.9709 0.8695 0.6841
0.651 136.0002 23153 6.3749 0.8795 0.6951
0.6577 137.0002 23322 7.3569 0.8730 0.6885
0.657 138.0002 23491 6.4300 0.8738 0.6889
0.6529 139.0002 23660 7.2328 0.8727 0.6863
0.6503 140.0002 23829 6.2251 0.8779 0.6937
0.6493 141.0002 23998 5.4486 0.8762 0.6954
0.6506 142.0002 24167 7.0720 0.8732 0.6916
0.6497 143.0002 24336 5.9793 0.8778 0.6941
0.652 144.0002 24505 6.6768 0.8752 0.6950
0.6453 145.0002 24674 5.6576 0.8766 0.6960
0.6477 146.0002 24843 6.5615 0.8771 0.6971
0.6405 147.0002 25012 5.6985 0.8771 0.6953
0.6458 148.0002 25181 6.7291 0.8758 0.6947
0.6423 149.0001 25350 7.1220 0.8741 0.6936
0.6426 150.0001 25519 6.8760 0.8770 0.6990
0.6411 151.0001 25688 6.8829 0.8758 0.6968
0.6521 152.0001 25857 6.0781 0.8751 0.6922
0.6342 153.0001 26026 7.5541 0.8787 0.7024
0.6385 154.0001 26195 6.5542 0.8751 0.7010
0.6341 155.0001 26364 6.9202 0.8777 0.7025
0.6416 156.0001 26533 6.2821 0.8750 0.6934
0.6417 157.0001 26702 5.9760 0.8787 0.7036
0.6375 158.0001 26871 6.9215 0.8749 0.6941
0.6396 159.0001 27040 6.9586 0.8755 0.6988
0.6402 160.0001 27209 7.4873 0.8775 0.6967
0.6384 161.0001 27378 6.6340 0.8765 0.6946
0.6417 162.0001 27547 6.9707 0.8791 0.6991
0.6347 163.0000 27716 6.7165 0.8759 0.6989
0.636 164.0000 27885 7.1870 0.8758 0.7025
0.6343 165.0000 28054 6.4669 0.8839 0.7085
0.6304 166.0000 28223 6.3772 0.8783 0.6999
0.6251 167.0000 28392 6.7920 0.8760 0.6977
0.6365 168.0000 28561 6.4200 0.8780 0.7018
0.6278 168.0013 28730 6.4624 0.8704 0.6910
0.6291 169.0013 28899 5.7714 0.8754 0.6975
0.6262 170.0012 29068 6.3103 0.8738 0.6979
0.6233 171.0012 29237 6.5736 0.8738 0.6973
0.6238 172.0012 29406 6.3100 0.8805 0.7077
0.6267 173.0012 29575 6.5377 0.8798 0.7111
0.6237 174.0012 29744 6.6138 0.8822 0.7099
0.6243 175.0012 29913 7.3389 0.8809 0.7056
0.6268 176.0012 30082 7.9599 0.8803 0.7083
0.6331 177.0012 30251 6.3465 0.8812 0.7077
0.6275 178.0012 30420 6.0927 0.8818 0.7153
0.625 179.0012 30589 6.7591 0.8814 0.7071
0.6299 180.0012 30758 6.3475 0.8800 0.7095
0.6188 181.0012 30927 7.6586 0.8735 0.6939
0.6215 182.0012 31096 6.3617 0.8842 0.7120
0.6228 183.0012 31265 6.9955 0.8805 0.7172
0.6171 184.0011 31434 6.6193 0.8811 0.7154
0.6194 185.0011 31603 6.4875 0.8814 0.7128
0.6187 186.0011 31772 5.4354 0.8824 0.7122
0.619 187.0011 31941 5.6417 0.8824 0.7074
0.6226 188.0011 32110 6.0233 0.8836 0.7123
0.619 189.0011 32279 7.0898 0.8851 0.7149
0.6157 190.0011 32448 6.6226 0.8876 0.7232
0.6171 191.0011 32617 6.4924 0.8799 0.7070
0.6177 192.0011 32786 7.7647 0.8782 0.7098
0.6179 193.0011 32955 6.4711 0.8850 0.7151
0.6169 194.0011 33124 6.8190 0.8835 0.7149
0.6124 195.0011 33293 7.6578 0.8823 0.7119
0.6185 196.0011 33462 6.8216 0.8832 0.7175
0.6132 197.0010 33631 7.0588 0.8861 0.7242
0.6111 198.0010 33800 7.4747 0.8835 0.7144
0.6127 199.0010 33969 7.7447 0.8834 0.7113
0.61 200.0010 34138 7.6975 0.8803 0.7151
0.6193 201.0010 34307 6.4387 0.8816 0.7099
0.6167 202.0010 34476 7.5285 0.8867 0.7184
0.6157 203.0010 34645 6.6411 0.8854 0.7181
0.6082 204.0010 34814 5.7796 0.8880 0.7192
0.613 205.0010 34983 5.3015 0.8833 0.7211
0.6133 206.0010 35152 6.4275 0.8826 0.7147
0.606 207.0010 35321 6.1046 0.8792 0.7171
0.6045 208.0010 35490 5.9309 0.8844 0.7207
0.6127 209.0010 35659 6.1429 0.8845 0.7168
0.6022 210.0010 35828 6.1108 0.8857 0.7174
0.6065 211.0009 35997 6.4227 0.8778 0.7082
0.6092 212.0009 36166 6.6492 0.8842 0.7181
0.6075 213.0009 36335 5.6531 0.8819 0.7176
0.6076 214.0009 36504 6.4636 0.8832 0.7126
0.6042 215.0009 36673 6.7895 0.8773 0.7091
0.5993 216.0009 36842 7.0939 0.8837 0.7173
0.6064 217.0009 37011 6.6639 0.8863 0.7231

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
0
Safetensors
Model size
31.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support