You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

BEE-spoke-data/verysmol_llama-v8-minipile_x2

This is still a work-in-progress and should be treated as such.

Model description

This is an autogressive smol language model. It generates text.

It achieves the following results on the evaluation set:

  • Loss: 2.7521
  • Accuracy: 0.4686

Intended uses & limitations

Doing things. Limitations are that it is smol.

Additionally, <insert generic, emotionless, and corporate statement about bias in language models here>.

Data

Most recent training run was on JeanKaddour/minipile for 2 epochs. Otherwise, please refer to the below quote:

UnFoRtUnAtElY We'rE UnAbLe tO ShArE DeTaIlS AbOuT ThE TrAiNiNg aNd tHe dAtAsEtS (eXtRaCtEd fRoM ThE OpEn wEb) DuE To tHe hIgHlY CoMpEtItIvE NaTuRe oF ThE FiElD.

evals

eval metrics
epoch 2.0
eval_accuracy 0.4685
eval_loss 2.7521
eval_runtime 0:00:03.89
eval_samples 300
eval_samples_per_second 77.049
eval_steps_per_second 9.759
perplexity 15.675

harness

some improvements and some degradations over prev versions. May indicate the last dataset in curricula matters/needs to be chosen specifically

hf-causal-experimental (pretrained=BEE-spoke-data/verysmol_llama-v8-minipile_x2,revision=main,trust_remote_code=True,dtype='float'), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16

Task Version Metric Value Stderr
arc_easy 0 acc 0.3662 ยฑ 0.0099
acc_norm 0.3460 ยฑ 0.0098
boolq 1 acc 0.6052 ยฑ 0.0085
lambada_openai 0 ppl 156.8153 ยฑ 6.5985
acc 0.2010 ยฑ 0.0056
openbookqa 0 acc 0.1280 ยฑ 0.0150
acc_norm 0.2660 ยฑ 0.0198
piqa 0 acc 0.5865 ยฑ 0.0115
acc_norm 0.5805 ยฑ 0.0115
winogrande 0 acc 0.5217 ยฑ 0.0140
Task Version Metric Value Stderr
arc_challenge 0 acc 0.1877 ยฑ 0.0114
acc_norm 0.2235 ยฑ 0.0122
Task Version Metric Value Stderr
hellaswag 0 acc 0.2622 ยฑ 0.0088
acc_norm 0.2777 ยฑ 0.0089
Task Version Metric Value Stderr
truthfulqa_mc 1 mc1 0.2705 ยฑ 0.0156
mc2 0.4729 ยฑ 0.0155

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 5404
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-07
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.7625 0.02 200 2.8982 0.4457
2.7377 0.03 400 2.8812 0.4477
2.6883 0.05 600 2.8774 0.4489
2.7654 0.06 800 2.8811 0.4479
2.744 0.08 1000 2.8838 0.4464
2.6922 0.09 1200 2.8921 0.4461
2.7416 0.11 1400 2.8930 0.4464
2.7337 0.12 1600 2.8972 0.4465
2.7046 0.14 1800 2.8933 0.4472
2.673 0.15 2000 2.8926 0.4483

...

Training Loss Epoch Step Validation Loss Accuracy
2.5155 1.88 24800 2.7524 0.4685
2.5092 1.89 25000 2.7522 0.4686
2.5093 1.91 25200 2.7523 0.4685
2.4574 1.92 25400 2.7521 0.4686
2.5137 1.94 25600 2.7522 0.4686
2.4598 1.95 25800 2.7521 0.4686
2.515 1.97 26000 2.7521 0.4685
2.5429 1.98 26200 2.7521 0.4686
2.4789 2.0 26400 2.7521 0.4686
Downloads last month
0
Safetensors
Model size
58.1M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train BEE-spoke-data/verysmol_llama-v8-minipile_x2

Spaces using BEE-spoke-data/verysmol_llama-v8-minipile_x2 2