BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Chuangmail/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'What was the total amount of tax incurred, collected, and remitted by AT&T in 2023?',
    'Total taxes incurred, collected and remitted by AT&T during 2023 were $16,877.',
    'Professional services expenses decreased $8 million in 2023 from 2022 primarily due to lower consulting expenses related to bringing certain mortgage technology-related costs in-house, partially offset by higher legal expenses primarily related to the Black Knight acquisition.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6771
cosine_accuracy@3 0.8329
cosine_accuracy@5 0.8614
cosine_accuracy@10 0.9086
cosine_precision@1 0.6771
cosine_precision@3 0.2776
cosine_precision@5 0.1723
cosine_precision@10 0.0909
cosine_recall@1 0.6771
cosine_recall@3 0.8329
cosine_recall@5 0.8614
cosine_recall@10 0.9086
cosine_ndcg@10 0.7951
cosine_mrr@10 0.7585
cosine_map@100 0.7618

Information Retrieval

Metric Value
cosine_accuracy@1 0.6786
cosine_accuracy@3 0.8257
cosine_accuracy@5 0.8643
cosine_accuracy@10 0.9014
cosine_precision@1 0.6786
cosine_precision@3 0.2752
cosine_precision@5 0.1729
cosine_precision@10 0.0901
cosine_recall@1 0.6786
cosine_recall@3 0.8257
cosine_recall@5 0.8643
cosine_recall@10 0.9014
cosine_ndcg@10 0.7927
cosine_mrr@10 0.7575
cosine_map@100 0.7614

Information Retrieval

Metric Value
cosine_accuracy@1 0.68
cosine_accuracy@3 0.81
cosine_accuracy@5 0.8529
cosine_accuracy@10 0.8971
cosine_precision@1 0.68
cosine_precision@3 0.27
cosine_precision@5 0.1706
cosine_precision@10 0.0897
cosine_recall@1 0.68
cosine_recall@3 0.81
cosine_recall@5 0.8529
cosine_recall@10 0.8971
cosine_ndcg@10 0.789
cosine_mrr@10 0.7542
cosine_map@100 0.7583

Information Retrieval

Metric Value
cosine_accuracy@1 0.6614
cosine_accuracy@3 0.8
cosine_accuracy@5 0.8386
cosine_accuracy@10 0.8914
cosine_precision@1 0.6614
cosine_precision@3 0.2667
cosine_precision@5 0.1677
cosine_precision@10 0.0891
cosine_recall@1 0.6614
cosine_recall@3 0.8
cosine_recall@5 0.8386
cosine_recall@10 0.8914
cosine_ndcg@10 0.7752
cosine_mrr@10 0.7381
cosine_map@100 0.7423

Information Retrieval

Metric Value
cosine_accuracy@1 0.6257
cosine_accuracy@3 0.78
cosine_accuracy@5 0.8214
cosine_accuracy@10 0.8729
cosine_precision@1 0.6257
cosine_precision@3 0.26
cosine_precision@5 0.1643
cosine_precision@10 0.0873
cosine_recall@1 0.6257
cosine_recall@3 0.78
cosine_recall@5 0.8214
cosine_recall@10 0.8729
cosine_ndcg@10 0.7507
cosine_mrr@10 0.7115
cosine_map@100 0.7163

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 2 tokens
    • mean: 20.39 tokens
    • max: 40 tokens
    • min: 2 tokens
    • mean: 46.37 tokens
    • max: 326 tokens
  • Samples:
    anchor positive
    What are the key factors HP considers when making adjustments to inventory valuation? HP makes adjustments to inventory valuation based on considerations of changes in demand, technological changes, supply constraints, product life cycle, component cost trends, product pricing, and quality issues.
    What types of products does AbbVie's portfolio include? AbbVie is a global, diversified research-based biopharmaceutical company with a comprehensive product portfolio that has leadership positions across immunology, oncology, aesthetics, neuroscience, and eye care.
    What does IBM’s 2023 Annual Report to Stockholders include? IBM's 2023 Annual Report to Stockholders includes their financial statements and supplementary data, which span from pages 44 to 121 and are incorporated by reference in the Form 10-K. Additionally, the financial statement schedule can be found on page S-1 of the same Form 10-K.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.6191 - - - - -
0.9746 12 - 0.7267 0.7355 0.7447 0.6939 0.7453
1.6244 20 0.6415 - - - - -
1.9492 24 - 0.7358 0.7509 0.7548 0.7075 0.7554
2.4365 30 0.4638 - - - - -
2.9239 36 - 0.7398 0.7573 0.7607 0.7124 0.7601
3.2487 40 0.4083 - - - - -
3.8985 48 - 0.7423 0.7583 0.7614 0.7163 0.7618
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.1.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 1.3.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
8
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Chuangmail/bge-base-financial-matryoshka

Finetuned
(369)
this model

Evaluation results