BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Chuangmail/bge-base-financial-matryoshka")
# Run inference
sentences = [
'What was the total amount of tax incurred, collected, and remitted by AT&T in 2023?',
'Total taxes incurred, collected and remitted by AT&T during 2023 were $16,877.',
'Professional services expenses decreased $8 million in 2023 from 2022 primarily due to lower consulting expenses related to bringing certain mortgage technology-related costs in-house, partially offset by higher legal expenses primarily related to the Black Knight acquisition.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6771 |
cosine_accuracy@3 | 0.8329 |
cosine_accuracy@5 | 0.8614 |
cosine_accuracy@10 | 0.9086 |
cosine_precision@1 | 0.6771 |
cosine_precision@3 | 0.2776 |
cosine_precision@5 | 0.1723 |
cosine_precision@10 | 0.0909 |
cosine_recall@1 | 0.6771 |
cosine_recall@3 | 0.8329 |
cosine_recall@5 | 0.8614 |
cosine_recall@10 | 0.9086 |
cosine_ndcg@10 | 0.7951 |
cosine_mrr@10 | 0.7585 |
cosine_map@100 | 0.7618 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6786 |
cosine_accuracy@3 | 0.8257 |
cosine_accuracy@5 | 0.8643 |
cosine_accuracy@10 | 0.9014 |
cosine_precision@1 | 0.6786 |
cosine_precision@3 | 0.2752 |
cosine_precision@5 | 0.1729 |
cosine_precision@10 | 0.0901 |
cosine_recall@1 | 0.6786 |
cosine_recall@3 | 0.8257 |
cosine_recall@5 | 0.8643 |
cosine_recall@10 | 0.9014 |
cosine_ndcg@10 | 0.7927 |
cosine_mrr@10 | 0.7575 |
cosine_map@100 | 0.7614 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.68 |
cosine_accuracy@3 | 0.81 |
cosine_accuracy@5 | 0.8529 |
cosine_accuracy@10 | 0.8971 |
cosine_precision@1 | 0.68 |
cosine_precision@3 | 0.27 |
cosine_precision@5 | 0.1706 |
cosine_precision@10 | 0.0897 |
cosine_recall@1 | 0.68 |
cosine_recall@3 | 0.81 |
cosine_recall@5 | 0.8529 |
cosine_recall@10 | 0.8971 |
cosine_ndcg@10 | 0.789 |
cosine_mrr@10 | 0.7542 |
cosine_map@100 | 0.7583 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6614 |
cosine_accuracy@3 | 0.8 |
cosine_accuracy@5 | 0.8386 |
cosine_accuracy@10 | 0.8914 |
cosine_precision@1 | 0.6614 |
cosine_precision@3 | 0.2667 |
cosine_precision@5 | 0.1677 |
cosine_precision@10 | 0.0891 |
cosine_recall@1 | 0.6614 |
cosine_recall@3 | 0.8 |
cosine_recall@5 | 0.8386 |
cosine_recall@10 | 0.8914 |
cosine_ndcg@10 | 0.7752 |
cosine_mrr@10 | 0.7381 |
cosine_map@100 | 0.7423 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6257 |
cosine_accuracy@3 | 0.78 |
cosine_accuracy@5 | 0.8214 |
cosine_accuracy@10 | 0.8729 |
cosine_precision@1 | 0.6257 |
cosine_precision@3 | 0.26 |
cosine_precision@5 | 0.1643 |
cosine_precision@10 | 0.0873 |
cosine_recall@1 | 0.6257 |
cosine_recall@3 | 0.78 |
cosine_recall@5 | 0.8214 |
cosine_recall@10 | 0.8729 |
cosine_ndcg@10 | 0.7507 |
cosine_mrr@10 | 0.7115 |
cosine_map@100 | 0.7163 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 2 tokens
- mean: 20.39 tokens
- max: 40 tokens
- min: 2 tokens
- mean: 46.37 tokens
- max: 326 tokens
- Samples:
anchor positive What are the key factors HP considers when making adjustments to inventory valuation?
HP makes adjustments to inventory valuation based on considerations of changes in demand, technological changes, supply constraints, product life cycle, component cost trends, product pricing, and quality issues.
What types of products does AbbVie's portfolio include?
AbbVie is a global, diversified research-based biopharmaceutical company with a comprehensive product portfolio that has leadership positions across immunology, oncology, aesthetics, neuroscience, and eye care.
What does IBM’s 2023 Annual Report to Stockholders include?
IBM's 2023 Annual Report to Stockholders includes their financial statements and supplementary data, which span from pages 44 to 121 and are incorporated by reference in the Form 10-K. Additionally, the financial statement schedule can be found on page S-1 of the same Form 10-K.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.6191 | - | - | - | - | - |
0.9746 | 12 | - | 0.7267 | 0.7355 | 0.7447 | 0.6939 | 0.7453 |
1.6244 | 20 | 0.6415 | - | - | - | - | - |
1.9492 | 24 | - | 0.7358 | 0.7509 | 0.7548 | 0.7075 | 0.7554 |
2.4365 | 30 | 0.4638 | - | - | - | - | - |
2.9239 | 36 | - | 0.7398 | 0.7573 | 0.7607 | 0.7124 | 0.7601 |
3.2487 | 40 | 0.4083 | - | - | - | - | - |
3.8985 | 48 | - | 0.7423 | 0.7583 | 0.7614 | 0.7163 | 0.7618 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.3.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Chuangmail/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.677
- Cosine Accuracy@3 on dim 768self-reported0.833
- Cosine Accuracy@5 on dim 768self-reported0.861
- Cosine Accuracy@10 on dim 768self-reported0.909
- Cosine Precision@1 on dim 768self-reported0.677
- Cosine Precision@3 on dim 768self-reported0.278
- Cosine Precision@5 on dim 768self-reported0.172
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.677
- Cosine Recall@3 on dim 768self-reported0.833