Reasoning models (experiment)
Collection
6 items
•
Updated
Took 28 hours to finetune on 2x Nvidia RTX A6000 with the following settings:
Run the model:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
import bitsandbytes
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True
)
model_id = "CreitinGameplays/Llama-3.1-8B-R1-v0.1"
# Initialize model and tokenizer with streaming support
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Custom streamer that collects the output into a string while streaming
class CollectingStreamer(TextStreamer):
def __init__(self, tokenizer):
super().__init__(tokenizer)
self.output = ""
def on_llm_new_token(self, token: str, **kwargs):
self.output += token
print(token, end="", flush=True) # prints the token as it's generated
print("Chat session started. Type 'exit' to quit.\n")
# Initialize chat history as a list of messages
chat_history = []
chat_history.append({"role": "system", "content": "You are an AI assistant made by Meta AI."})
while True:
user_input = input("You: ")
if user_input.strip().lower() == "exit":
break
# Append the user message to the chat history
chat_history.append({"role": "user", "content": user_input})
# Prepare the prompt by formatting the complete chat history
inputs = tokenizer.apply_chat_template(
chat_history,
return_tensors="pt"
).to(model.device)
# Create a new streamer for the current generation
streamer = CollectingStreamer(tokenizer)
# Generate streamed response
model.generate(
inputs,
streamer=streamer,
temperature=0.6,
top_p=0.9,
top_k=50,
repetition_penalty=1.1,
max_new_tokens=6112,
do_sample=True
)
# The complete response text is stored in streamer.output
response_text = streamer.output
print("\nAssistant:", response_text)
# Append the assistant response to the chat history
chat_history.append({"role": "assistant", "content": response_text})
The model may not output the final response after the reasoning step.