results_v3 / README.md
CuriousPotato's picture
Model save
835ef36 verified
metadata
library_name: peft
license: apache-2.0
base_model: Salesforce/codet5-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: results_v3
    results: []

results_v3

This model is a fine-tuned version of Salesforce/codet5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7503
  • Accuracy: 0.6336
  • Precision: 0.1607
  • Recall: 0.9
  • F1 Score: 0.2727
  • F2 Score: 0.4688
  • Gmean: 0.7419

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score F2 Score Gmean
No log 1.0 57 0.9026 0.4809 0.0735 0.5 0.1282 0.2315 0.4896
0.7464 2.0 114 0.7800 0.5725 0.1034 0.6 0.1765 0.3061 0.5849
0.7464 3.0 171 0.7762 0.5878 0.1452 0.9 0.25 0.4412 0.7112
0.6653 4.0 228 0.8069 0.5725 0.1406 0.9 0.2432 0.4327 0.7006
0.6653 5.0 285 0.7910 0.5954 0.1475 0.9 0.2535 0.4455 0.7164
0.6437 6.0 342 0.7414 0.6412 0.1636 0.9 0.2769 0.4737 0.7469
0.6437 7.0 399 0.8038 0.5954 0.1475 0.9 0.2535 0.4455 0.7164
0.6328 8.0 456 0.6908 0.6794 0.18 0.9 0.3 0.5000 0.7714
0.5966 9.0 513 0.7782 0.6183 0.1552 0.9 0.2647 0.4592 0.7318
0.5966 10.0 570 0.7343 0.6565 0.1698 0.9 0.2857 0.4839 0.7568
0.5819 11.0 627 0.7569 0.6260 0.1579 0.9 0.2687 0.4639 0.7369
0.5819 12.0 684 0.7650 0.6183 0.1552 0.9 0.2647 0.4592 0.7318
0.5643 13.0 741 0.7711 0.6260 0.1579 0.9 0.2687 0.4639 0.7369
0.5643 14.0 798 0.7470 0.6336 0.1607 0.9 0.2727 0.4688 0.7419
0.569 15.0 855 0.7503 0.6336 0.1607 0.9 0.2727 0.4688 0.7419

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0