See axolotl config
axolotl version: 0.8.0
base_model: Dans-DiscountModels/7b-m-dans-personalityengine-v1.2.1-rc-2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code:
# wandb configuration
wandb_project: 7b-m-dans-optimizersweeps
wandb_watch:
wandb_run_id: repremover-1-1-ademamix-b1_0.9-b2_0.999-b3_0.999-a15
wandb_log_model:
# push checkpoints to hub
hub_model_id: Dans-DiscountModels/7b-m-dans-optimizersweeps-repremover-1-ademamix-b1_0.9-b2_0.999-b3_0.999-a15
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy: "every_save"
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: true
# where to save the finished model to
output_dir: ./7b-m-dans-optimizersweeps
# where to save the dataset to
dataset_prepared_path: ./7b-m-dans-optimizersweeps-data
save_safetensors: true
# dataset settings (local or huggingface repo)
datasets:
- path: Dans-DiscountModels/pretokenization-test-3
ds_type: parquet
type:
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
adapter:
lora_model_dir:
val_set_size: 0.01
sequence_len: 8192
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
gradient_checkpointing: true
# gradient_checkpointing_kwargs:
# use_reentrant: false
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 3
optimizer: ademamix
optim_args: "beta1=0.9,beta2=0.999,beta3=0.999,alpha=15"
lr_scheduler: rex
learning_rate: 0.0000001
cosine_min_lr_ratio:
# weight_decay: 0.03
max_grad_norm: 0.001
train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: false
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: false
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 24
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 8
save_total_limit: 2
debug: false
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
special_tokens:
7b-m-dans-optimizersweeps-repremover-1-ademamix-b1_0.9-b2_0.999-b3_0.999-a15
This model is a fine-tuned version of Dans-DiscountModels/7b-m-dans-personalityengine-v1.2.1-rc-2 on the Dans-DiscountModels/pretokenization-test-3 dataset. It achieves the following results on the evaluation set:
- Loss: 2.0850
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use ademamix and the args are: beta1=0.9,beta2=0.999,beta3=0.999,alpha=15
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 41
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0376 | 0.0072 | 1 | 2.1457 |
2.2662 | 0.0432 | 6 | 2.1210 |
2.3077 | 0.0863 | 12 | 2.1574 |
2.1864 | 0.1295 | 18 | 2.1194 |
2.2386 | 0.1727 | 24 | 2.1311 |
2.0602 | 0.2158 | 30 | 2.1502 |
2.1397 | 0.2590 | 36 | 2.1246 |
2.038 | 0.3022 | 42 | 2.1153 |
2.0877 | 0.3453 | 48 | 2.1311 |
2.1585 | 0.3885 | 54 | 2.1273 |
2.0513 | 0.4317 | 60 | 2.1105 |
2.0461 | 0.4748 | 66 | 2.1311 |
2.2131 | 0.5180 | 72 | 2.1174 |
2.1054 | 0.5612 | 78 | 2.1201 |
2.027 | 0.6043 | 84 | 2.1396 |
2.1459 | 0.6475 | 90 | 2.1223 |
2.0967 | 0.6906 | 96 | 2.1113 |
2.1131 | 0.7338 | 102 | 2.1283 |
2.0769 | 0.7770 | 108 | 2.1267 |
2.0293 | 0.8201 | 114 | 2.1059 |
2.0288 | 0.8633 | 120 | 2.1166 |
1.9989 | 0.9065 | 126 | 2.1163 |
2.1579 | 0.9496 | 132 | 2.1041 |
1.9982 | 0.9928 | 138 | 2.1103 |
2.0953 | 1.0360 | 144 | 2.1216 |
1.9626 | 1.0791 | 150 | 2.1030 |
2.1126 | 1.1223 | 156 | 2.1256 |
2.0291 | 1.1655 | 162 | 2.1370 |
2.0219 | 1.2086 | 168 | 2.1236 |
2.014 | 1.2518 | 174 | 2.1176 |
2.0008 | 1.2950 | 180 | 2.1286 |
2.0728 | 1.3381 | 186 | 2.1221 |
2.0873 | 1.3813 | 192 | 2.1235 |
2.1341 | 1.4245 | 198 | 2.1250 |
2.0258 | 1.4676 | 204 | 2.1253 |
2.0804 | 1.5108 | 210 | 2.1213 |
1.9285 | 1.5540 | 216 | 2.1091 |
2.0789 | 1.5971 | 222 | 2.1192 |
2.0234 | 1.6403 | 228 | 2.1141 |
1.9992 | 1.6835 | 234 | 2.1120 |
2.0681 | 1.7266 | 240 | 2.1243 |
2.0501 | 1.7698 | 246 | 2.1073 |
1.9897 | 1.8129 | 252 | 2.1228 |
2.016 | 1.8561 | 258 | 2.1291 |
2.0801 | 1.8993 | 264 | 2.1172 |
2.051 | 1.9424 | 270 | 2.0833 |
2.0864 | 1.9856 | 276 | 2.1147 |
2.0431 | 2.0288 | 282 | 2.1215 |
2.0321 | 2.0719 | 288 | 2.1119 |
2.1107 | 2.1151 | 294 | 2.1023 |
2.0375 | 2.1583 | 300 | 2.1155 |
1.979 | 2.2014 | 306 | 2.1224 |
2.0081 | 2.2446 | 312 | 2.1010 |
2.06 | 2.2878 | 318 | 2.1260 |
2.0285 | 2.3309 | 324 | 2.1282 |
2.0394 | 2.3741 | 330 | 2.1087 |
2.0224 | 2.4173 | 336 | 2.0999 |
2.0705 | 2.4604 | 342 | 2.1132 |
2.0153 | 2.5036 | 348 | 2.1028 |
2.0899 | 2.5468 | 354 | 2.1298 |
2.0474 | 2.5899 | 360 | 2.1162 |
2.0441 | 2.6331 | 366 | 2.0987 |
2.0019 | 2.6763 | 372 | 2.1071 |
1.9176 | 2.7194 | 378 | 2.1005 |
1.982 | 2.7626 | 384 | 2.0925 |
2.064 | 2.8058 | 390 | 2.1295 |
2.0284 | 2.8489 | 396 | 2.0917 |
2.0648 | 2.8921 | 402 | 2.1241 |
1.9668 | 2.9353 | 408 | 2.1286 |
1.9427 | 2.9784 | 414 | 2.0850 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support