ModernBERT Food Hazard Category Classification Model - Synonym Replacement Augmentation

Model Details

Model Description

This model is finetuned on multi-class food hazard-category text classification using synonym replacement augmentation and ModernBERT.

Model Sources

How to Get Started With the Model

Use the code below to get started with the model in PyTorch.

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from huggingface_hub import hf_hub_download
import pandas as pd

model, category, augmentation = 'modernbert', 'hazard-category', 'sr'

repo_id = f"DataScienceWFSR/{model}-food-{category}-{augmentation}"
lb_path = hf_hub_download(repo_id=repo_id, filename=f"labelencoder_{category}.pkl")
lb =  pd.read_pickle(lb_path)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
model = AutoModelForSequenceClassification.from_pretrained(repo_id)
model.eval()

sample = ('Case Number: 039-94 Date Opened: 10/20/1994 Date Closed: 03/06/1995 Recall Class: 1'
        ' Press Release (Y/N): N Domestic Est. Number: 07188 M Name: PREPARED FOODS Imported '
        'Product (Y/N): N Foreign Estab. Number: N/A City: SANTA TERESA State: NM Country: USA'
        ' Product: HAM, SLICED Problem: BACTERIA Description: LISTERIA '
        'Total Pounds Recalled: 3,920 Pounds Recovered: 3,920')

inputs = tokenizer(sample, return_tensors="pt")
with torch.no_grad():
    outputs = model(**inputs)
predictions = outputs.logits.argmax(dim=-1)
predicted_label = lb.inverse_transform(predictions.numpy())[0]
print(f"The predicted label is: {predicted_label}")

Training Details

Training Data

Training and Validation data provided by SemEval-2025 Task 9 organizers : Food Recall Incidents dataset (only English) link

Training Procedure

Training Hyperparameters

  • batch_size: 16
  • epochs: 3
  • lr_scheduler: linear

Evaluation

Testing Data & Metrics

Testing Data

Test data: 997 samples (link)

Metrics

F1-macro

Results

F1-macro scores for each model in the official test set utilizing the text field per category and subtasks scores (ST1 and ST2) rounded to 3 decimals. With bold, we indicated the model's specific results.

Model hazard-category product-category hazard product ST1 ST2
BERTbase 0.747 0.757 0.581 0.170 0.753 0.382
BERTCW 0.760 0.761 0.671 0.280 0.762 0.491
BERTSR 0.770 0.754 0.666 0.275 0.764 0.478
BERTRW 0.752 0.757 0.651 0.275 0.756 0.467
DistilBERTbase 0.761 0.757 0.593 0.154 0.760 0.378
DistilBERTCW 0.766 0.753 0.635 0.246 0.763 0.449
DistilBERTSR 0.756 0.759 0.644 0.240 0.763 0.448
DistilBERTRW 0.749 0.747 0.647 0.261 0.753 0.462
RoBERTabase 0.760 0.753 0.579 0.123 0.755 0.356
RoBERTaCW 0.773 0.739 0.630 0.000 0.760 0.315
RoBERTaSR 0.777 0.755 0.637 0.000 0.767 0.319
RoBERTaRW 0.757 0.611 0.615 0.000 0.686 0.308
ModernBERTbase 0.781 0.745 0.667 0.275 0.769 0.485
ModernBERTCW 0.761 0.712 0.609 0.252 0.741 0.441
ModernBERTSR 0.790 0.728 0.591 0.253 0.761 0.434
ModernBERTRW 0.761 0.751 0.629 0.237 0.759 0.440

Technical Specifications

Compute Infrastructure

Hardware

NVIDIA A100 80GB and NVIDIA GeForce RTX 3070 Ti

Software

Citation

BibTeX:

For the original paper:

@inproceedings{brightcookies-semeval2025-task9, 
    title="BrightCookies at {S}em{E}val-2025 Task 9: Exploring Data Augmentation for Food Hazard Classification}, 
    author="Papadopoulou, Foteini and Mutlu, Osman  and Özen, Neris and van der Velden, Bas H. M. and Hendrickx, Iris  and Hürriyetoğlu, Ali",
    booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
    month = jul, 
    year = "2025", 
    address = "Vienna, Austria", 
    publisher = "Association for Computational Linguistics", 
} 

For the SemEval2025 Task9:

@inproceedings{semeval2025-task9, 
    title = "{S}em{E}val-2025 Task 9: The Food Hazard Detection Challenge", 
    author = "Randl, Korbinian and Pavlopoulos, John and Henriksson, Aron and Lindgren, Tony and Bakagianni, Juli", 
    booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
    month = jul, 
    year = "2025", 
    address = "Vienna, Austria", 
    publisher = "Association for Computational Linguistics", 
} 

Model Card Authors and Contact

Authors: Foteini Papadopoulou, Osman Mutlu, Neris Özen, Bas H.M. van der Velden, Iris Hendrickx, Ali Hürriyetoğlu

Contact: [email protected]

Downloads last month
6
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for DataScienceWFSR/modernbert-food-hazard-category-sr

Finetuned
(530)
this model

Collection including DataScienceWFSR/modernbert-food-hazard-category-sr