ModernBERT Food Hazard Category Classification Model - Synonym Replacement Augmentation
Model Details
Model Description
This model is finetuned on multi-class food hazard-category text classification using synonym replacement augmentation and ModernBERT.
- Developed by: DataScienceWFSR
- Model type: Text Classification
- Language(s) (NLP): English
- Finetuned from model: answerdotai/ModernBERT-base
Model Sources
- Repository: https://github.com/WFSRDataScience/SemEval2025Task9
- Paper : https://arxiv.org/abs/2504.20703
How to Get Started With the Model
Use the code below to get started with the model in PyTorch.
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from huggingface_hub import hf_hub_download
import pandas as pd
model, category, augmentation = 'modernbert', 'hazard-category', 'sr'
repo_id = f"DataScienceWFSR/{model}-food-{category}-{augmentation}"
lb_path = hf_hub_download(repo_id=repo_id, filename=f"labelencoder_{category}.pkl")
lb = pd.read_pickle(lb_path)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
model = AutoModelForSequenceClassification.from_pretrained(repo_id)
model.eval()
sample = ('Case Number: 039-94 Date Opened: 10/20/1994 Date Closed: 03/06/1995 Recall Class: 1'
' Press Release (Y/N): N Domestic Est. Number: 07188 M Name: PREPARED FOODS Imported '
'Product (Y/N): N Foreign Estab. Number: N/A City: SANTA TERESA State: NM Country: USA'
' Product: HAM, SLICED Problem: BACTERIA Description: LISTERIA '
'Total Pounds Recalled: 3,920 Pounds Recovered: 3,920')
inputs = tokenizer(sample, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits.argmax(dim=-1)
predicted_label = lb.inverse_transform(predictions.numpy())[0]
print(f"The predicted label is: {predicted_label}")
Training Details
Training Data
Training and Validation data provided by SemEval-2025 Task 9 organizers : Food Recall Incidents
dataset (only English) link
Training Procedure
Training Hyperparameters
- batch_size:
16
- epochs:
3
- lr_scheduler:
linear
Evaluation
Testing Data & Metrics
Testing Data
Test data: 997 samples (link)
Metrics
F1-macro
Results
F1-macro scores for each model in the official test set utilizing the text
field per category and subtasks scores (ST1 and ST2) rounded to 3 decimals. With bold, we indicated the model's specific results.
Model | hazard-category | product-category | hazard | product | ST1 | ST2 |
---|---|---|---|---|---|---|
BERTbase | 0.747 | 0.757 | 0.581 | 0.170 | 0.753 | 0.382 |
BERTCW | 0.760 | 0.761 | 0.671 | 0.280 | 0.762 | 0.491 |
BERTSR | 0.770 | 0.754 | 0.666 | 0.275 | 0.764 | 0.478 |
BERTRW | 0.752 | 0.757 | 0.651 | 0.275 | 0.756 | 0.467 |
DistilBERTbase | 0.761 | 0.757 | 0.593 | 0.154 | 0.760 | 0.378 |
DistilBERTCW | 0.766 | 0.753 | 0.635 | 0.246 | 0.763 | 0.449 |
DistilBERTSR | 0.756 | 0.759 | 0.644 | 0.240 | 0.763 | 0.448 |
DistilBERTRW | 0.749 | 0.747 | 0.647 | 0.261 | 0.753 | 0.462 |
RoBERTabase | 0.760 | 0.753 | 0.579 | 0.123 | 0.755 | 0.356 |
RoBERTaCW | 0.773 | 0.739 | 0.630 | 0.000 | 0.760 | 0.315 |
RoBERTaSR | 0.777 | 0.755 | 0.637 | 0.000 | 0.767 | 0.319 |
RoBERTaRW | 0.757 | 0.611 | 0.615 | 0.000 | 0.686 | 0.308 |
ModernBERTbase | 0.781 | 0.745 | 0.667 | 0.275 | 0.769 | 0.485 |
ModernBERTCW | 0.761 | 0.712 | 0.609 | 0.252 | 0.741 | 0.441 |
ModernBERTSR | 0.790 | 0.728 | 0.591 | 0.253 | 0.761 | 0.434 |
ModernBERTRW | 0.761 | 0.751 | 0.629 | 0.237 | 0.759 | 0.440 |
Technical Specifications
Compute Infrastructure
Hardware
NVIDIA A100 80GB and NVIDIA GeForce RTX 3070 Ti
Software
Library | Version | URL |
---|---|---|
Transformers | 4.49.0 | https://huggingface.co/docs/transformers/index |
PyTorch | 2.6.0 | https://pytorch.org/ |
SpaCy | 3.8.4 | https://spacy.io/ |
Scikit-learn | 1.6.0 | https://scikit-learn.org/stable/ |
Pandas | 2.2.3 | https://pandas.pydata.org/ |
Optuna | 4.2.1 | https://optuna.org/ |
NumPy | 2.0.2 | https://numpy.org/ |
NLP AUG | 1.1.11 | https://nlpaug.readthedocs.io/en/latest/index.html |
BeautifulSoup4 | 4.12.3 | https://www.crummy.com/software/BeautifulSoup/bs4/doc/# |
Citation
BibTeX:
For the original paper:
@inproceedings{brightcookies-semeval2025-task9,
title="BrightCookies at {S}em{E}val-2025 Task 9: Exploring Data Augmentation for Food Hazard Classification},
author="Papadopoulou, Foteini and Mutlu, Osman and Özen, Neris and van der Velden, Bas H. M. and Hendrickx, Iris and Hürriyetoğlu, Ali",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
}
For the SemEval2025 Task9:
@inproceedings{semeval2025-task9,
title = "{S}em{E}val-2025 Task 9: The Food Hazard Detection Challenge",
author = "Randl, Korbinian and Pavlopoulos, John and Henriksson, Aron and Lindgren, Tony and Bakagianni, Juli",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
}
Model Card Authors and Contact
Authors: Foteini Papadopoulou, Osman Mutlu, Neris Özen, Bas H.M. van der Velden, Iris Hendrickx, Ali Hürriyetoğlu
Contact: [email protected]
- Downloads last month
- 6
Model tree for DataScienceWFSR/modernbert-food-hazard-category-sr
Base model
answerdotai/ModernBERT-base