RoofSense / README.md
DimitrisMantas's picture
Update README.md
cfcf6a6 verified
metadata
base_model: timm/resnet18d.ra2_in1k
base_model_relation: merge
datasets:
  - DimitrisMantas/RoofSense
library_name: segmentation-models-pytorch
license: cc-by-4.0
metrics:
  - accuracy
  - confusion_matrix
  - f1
  - mean_iou
  - precision
  - recall
model-index:
  - name: RoofSense
    results:
      - dataset:
          name: RoofSense
          type: DimitrisMantas/RoofSense
        metrics:
          - name: Average Accuracy
            type: accuracy
            value: 0.8499
          - name: Overall Accuracy
            type: accuracy
            value: 0.9113
          - name: Average Precision
            type: precision
            value: 0.842
          - name: mIoU
            type: mean_iou
            value: 0.7474
        task:
          name: Semantic Segmentation
          type: image-segmentation
pipeline_tag: image-segmentation
tags:
  - aerial-imagery
  - lidar
  - data-fusion
  - roofing-materials
  - roofing-material-classification
  - semantic-segmentation

For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1

Doc / guide: https://huggingface.co/docs/hub/model-cards

{{ card_data }}

Model Card for RoofSense

An encoder-decoder semantic segmentation model for multimodal roofing material classification.

Model Details

Model Description

The model adopts an encoder-decoder architecture, pairing ResNet-18-D with DeepLabv3+. Following hyperparameter optimisation, the encoder blocks were augmented with anti-aliasing and efficient channel attention modules. In addition, the global average pooling blocks in the encoder were replaced with the mean of average and maximum pooling. Furthermore, dilation rates of the atrous spatial pyramid pooling block of the decoder were set to $\left(20, 15, 6\right)$. Finally, address any labelling errors and improve predicitions in small regions, the decorer output stride was set to sixteen.

  • Developed by: Dimitris Mantas, Delft University of Technology, The Netherlands
  • Model type: Fully Convolutional Neural Network
  • License: Creative Commons Attribution 4.0 International
  • Base Model: timm/resnet18d.ra2_in1k (Transfer Learning)

Model Sources

Uses

Direct Use

{{ direct_use | default("[More Information Needed]", true)}}

Downstream Use [optional]

{{ downstream_use | default("[More Information Needed]", true)}}

Out-of-Scope Use

{{ out_of_scope_use | default("[More Information Needed]", true)}}

Bias, Risks, and Limitations

{{ bias_risks_limitations | default("[More Information Needed]", true)}}

Recommendations

{{ bias_recommendations | default("Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", true)}}

How to Get Started with the Model

Use the code below to get started with the model.

{{ get_started_code | default("[More Information Needed]", true)}}

Training Details

Training Data

{{ training_data | default("[More Information Needed]", true)}}

Training Procedure

Preprocessing [optional]

{{ preprocessing | default("[More Information Needed]", true)}}

Training Hyperparameters

  • Training regime: {{ training_regime | default("[More Information Needed]", true)}}

Speeds, Sizes, Times [optional]

{{ speeds_sizes_times | default("[More Information Needed]", true)}}

Evaluation

Testing Data, Factors & Metrics

Testing Data

{{ testing_data | default("[More Information Needed]", true)}}

Factors

{{ testing_factors | default("[More Information Needed]", true)}}

Metrics

{{ testing_metrics | default("[More Information Needed]", true)}}

Results

{{ results | default("[More Information Needed]", true)}}

Summary

{{ results_summary | default("", true) }}

Model Examination [optional]

{{ model_examination | default("[More Information Needed]", true)}}

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: {{ hardware_type | default("[More Information Needed]", true)}}
  • Hours used: {{ hours_used | default("[More Information Needed]", true)}}
  • Cloud Provider: {{ cloud_provider | default("[More Information Needed]", true)}}
  • Compute Region: {{ cloud_region | default("[More Information Needed]", true)}}
  • Carbon Emitted: {{ co2_emitted | default("[More Information Needed]", true)}}

Technical Specifications [optional]

Model Architecture and Objective

{{ model_specs | default("[More Information Needed]", true)}}

Compute Infrastructure

{{ compute_infrastructure | default("[More Information Needed]", true)}}

Hardware

{{ hardware_requirements | default("[More Information Needed]", true)}}

Software

{{ software | default("[More Information Needed]", true)}}

Citation [optional]

BibTeX:

{{ citation_bibtex | default("[More Information Needed]", true)}}

APA:

{{ citation_apa | default("[More Information Needed]", true)}}

Glossary [optional]

{{ glossary | default("[More Information Needed]", true)}}

More Information [optional]

{{ more_information | default("[More Information Needed]", true)}}

Model Card Authors [optional]

{{ model_card_authors | default("[More Information Needed]", true)}}

Model Card Contact

{{ model_card_contact | default("[More Information Needed]", true)}}